Step |
Hyp |
Ref |
Expression |
1 |
|
0prjspn.w |
⊢ 𝑊 = ( 𝐾 freeLMod ( 0 ... 0 ) ) |
2 |
|
0prjspn.b |
⊢ 𝐵 = ( ( Base ‘ 𝑊 ) ∖ { ( 0g ‘ 𝑊 ) } ) |
3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
4 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } |
5 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
7 |
4 1 2 5 6
|
prjspnval2 |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝐾 ∈ DivRing ) → ( 0 ℙ𝕣𝕠𝕛n 𝐾 ) = ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ) ) |
8 |
3 7
|
mpan |
⊢ ( 𝐾 ∈ DivRing → ( 0 ℙ𝕣𝕠𝕛n 𝐾 ) = ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ) ) |
9 |
|
ovex |
⊢ ( 0 ... 0 ) ∈ V |
10 |
1
|
frlmsca |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 0 ... 0 ) ∈ V ) → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
11 |
9 10
|
mpan2 |
⊢ ( 𝐾 ∈ DivRing → 𝐾 = ( Scalar ‘ 𝑊 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝐾 ∈ DivRing → ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
13 |
12
|
rexeqdv |
⊢ ( 𝐾 ∈ DivRing → ( ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ↔ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝐾 ∈ DivRing → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) ) |
15 |
14
|
opabbidv |
⊢ ( 𝐾 ∈ DivRing → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ) |
16 |
15
|
qseq2d |
⊢ ( 𝐾 ∈ DivRing → ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ) = ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ) ) |
17 |
1
|
frlmlvec |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 0 ... 0 ) ∈ V ) → 𝑊 ∈ LVec ) |
18 |
9 17
|
mpan2 |
⊢ ( 𝐾 ∈ DivRing → 𝑊 ∈ LVec ) |
19 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
20 |
18 19
|
syl |
⊢ ( 𝐾 ∈ DivRing → 𝑊 ∈ LMod ) |
21 |
20
|
adantr |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑊 ∈ LMod ) |
22 |
15
|
adantr |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑎 ∈ 𝐵 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ) |
23 |
|
eqid |
⊢ ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) = ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) |
24 |
4 2 6 5 1 23
|
0prjspnrel |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑎 ∈ 𝐵 ) → 𝑎 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ) |
25 |
22 24
|
breqdi |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑎 ∈ 𝐵 ) → 𝑎 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ) |
26 |
25
|
adantrr |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ) |
27 |
15
|
adantr |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑏 ∈ 𝐵 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ) |
28 |
4 2 6 5 1 23
|
0prjspnrel |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑏 ∈ 𝐵 ) → 𝑏 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ 𝐾 ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ) |
29 |
27 28
|
breqdi |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑏 ∈ 𝐵 ) → 𝑏 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ) |
30 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } |
31 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
32 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
33 |
30 2 31 6 32
|
prjspersym |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑏 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ) → ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) |
34 |
18 29 33
|
syl2an2r |
⊢ ( ( 𝐾 ∈ DivRing ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) |
35 |
34
|
adantrl |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) |
36 |
30 2 31 6 32
|
prjspertr |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑎 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ∧ ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) ) → 𝑎 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) |
37 |
21 26 35 36
|
syl12anc |
⊢ ( ( 𝐾 ∈ DivRing ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) |
38 |
30 2 31 6 32
|
prjsper |
⊢ ( 𝑊 ∈ LVec → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } Er 𝐵 ) |
39 |
18 38
|
syl |
⊢ ( 𝐾 ∈ DivRing → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } Er 𝐵 ) |
40 |
2 1 23
|
0prjspnlem |
⊢ ( 𝐾 ∈ DivRing → ( ( 𝐾 unitVec ( 0 ... 0 ) ) ‘ 0 ) ∈ 𝐵 ) |
41 |
37 39 40
|
qsalrel |
⊢ ( 𝐾 ∈ DivRing → ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) } ) = { 𝐵 } ) |
42 |
8 16 41
|
3eqtrd |
⊢ ( 𝐾 ∈ DivRing → ( 0 ℙ𝕣𝕠𝕛n 𝐾 ) = { 𝐵 } ) |