| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0prjspn.w | ⊢ 𝑊  =  ( 𝐾  freeLMod  ( 0 ... 0 ) ) | 
						
							| 2 |  | 0prjspn.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑊 )  ∖  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 3 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 4 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 6 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 7 | 4 1 2 5 6 | prjspnval2 | ⊢ ( ( 0  ∈  ℕ0  ∧  𝐾  ∈  DivRing )  →  ( 0 ℙ𝕣𝕠𝕛n 𝐾 )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ) ) | 
						
							| 8 | 3 7 | mpan | ⊢ ( 𝐾  ∈  DivRing  →  ( 0 ℙ𝕣𝕠𝕛n 𝐾 )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ) ) | 
						
							| 9 |  | ovex | ⊢ ( 0 ... 0 )  ∈  V | 
						
							| 10 | 1 | frlmsca | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 0 ... 0 )  ∈  V )  →  𝐾  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 11 | 9 10 | mpan2 | ⊢ ( 𝐾  ∈  DivRing  →  𝐾  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝐾  ∈  DivRing  →  ( Base ‘ 𝐾 )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 13 | 12 | rexeqdv | ⊢ ( 𝐾  ∈  DivRing  →  ( ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ↔  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝐾  ∈  DivRing  →  ( ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) ) ) | 
						
							| 15 | 14 | opabbidv | ⊢ ( 𝐾  ∈  DivRing  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ) | 
						
							| 16 | 15 | qseq2d | ⊢ ( 𝐾  ∈  DivRing  →  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ) ) | 
						
							| 17 | 1 | frlmlvec | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 0 ... 0 )  ∈  V )  →  𝑊  ∈  LVec ) | 
						
							| 18 | 9 17 | mpan2 | ⊢ ( 𝐾  ∈  DivRing  →  𝑊  ∈  LVec ) | 
						
							| 19 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝐾  ∈  DivRing  →  𝑊  ∈  LMod ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑊  ∈  LMod ) | 
						
							| 22 | 15 | adantr | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑎  ∈  𝐵 )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ) | 
						
							| 23 |  | eqid | ⊢ ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 )  =  ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) | 
						
							| 24 | 4 2 6 5 1 23 | 0prjspnrel | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑎  ∈  𝐵 )  →  𝑎 { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ) | 
						
							| 25 | 22 24 | breqdi | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑎  ∈  𝐵 )  →  𝑎 { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ) | 
						
							| 26 | 25 | adantrr | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑎 { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ) | 
						
							| 27 | 15 | adantr | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑏  ∈  𝐵 )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ) | 
						
							| 28 | 4 2 6 5 1 23 | 0prjspnrel | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑏  ∈  𝐵 )  →  𝑏 { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ 𝐾 ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ) | 
						
							| 29 | 27 28 | breqdi | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑏  ∈  𝐵 )  →  𝑏 { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) ) | 
						
							| 30 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } | 
						
							| 31 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 32 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 33 | 30 2 31 6 32 | prjspersym | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑏 { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) )  →  ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) | 
						
							| 34 | 18 29 33 | syl2an2r | ⊢ ( ( 𝐾  ∈  DivRing  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) | 
						
							| 35 | 34 | adantrl | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) | 
						
							| 36 | 30 2 31 6 32 | prjspertr | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑎 { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 )  ∧  ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 ) { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) )  →  𝑎 { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) | 
						
							| 37 | 21 26 35 36 | syl12anc | ⊢ ( ( 𝐾  ∈  DivRing  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑎 { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } 𝑏 ) | 
						
							| 38 | 30 2 31 6 32 | prjsper | ⊢ ( 𝑊  ∈  LVec  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  Er  𝐵 ) | 
						
							| 39 | 18 38 | syl | ⊢ ( 𝐾  ∈  DivRing  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) }  Er  𝐵 ) | 
						
							| 40 | 2 1 23 | 0prjspnlem | ⊢ ( 𝐾  ∈  DivRing  →  ( ( 𝐾  unitVec  ( 0 ... 0 ) ) ‘ 0 )  ∈  𝐵 ) | 
						
							| 41 | 37 39 40 | qsalrel | ⊢ ( 𝐾  ∈  DivRing  →  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) } )  =  { 𝐵 } ) | 
						
							| 42 | 8 16 41 | 3eqtrd | ⊢ ( 𝐾  ∈  DivRing  →  ( 0 ℙ𝕣𝕠𝕛n 𝐾 )  =  { 𝐵 } ) |