Metamath Proof Explorer


Theorem 0prjspnrel

Description: In the zero-dimensional projective space, all vectors are equivalent to the unit vector. (Contributed by Steven Nguyen, 7-Jun-2023)

Ref Expression
Hypotheses 0prjspnrel.e ˙ = x y | x B y B l S x = l · ˙ y
0prjspnrel.b B = Base W 0 W
0prjspnrel.x · ˙ = W
0prjspnrel.s S = Base K
0prjspnrel.w W = K freeLMod 0 0
0prjspnrel.1 1 ˙ = K unitVec 0 0 0
Assertion 0prjspnrel K DivRing X B X ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 0prjspnrel.e ˙ = x y | x B y B l S x = l · ˙ y
2 0prjspnrel.b B = Base W 0 W
3 0prjspnrel.x · ˙ = W
4 0prjspnrel.s S = Base K
5 0prjspnrel.w W = K freeLMod 0 0
6 0prjspnrel.1 1 ˙ = K unitVec 0 0 0
7 simpr K DivRing X B X B
8 2 5 6 0prjspnlem K DivRing 1 ˙ B
9 8 adantr K DivRing X B 1 ˙ B
10 sneq n = X 0 n = X 0
11 10 xpeq2d n = X 0 0 0 × n = 0 0 × X 0
12 11 eqeq2d n = X 0 X = 0 0 × n X = 0 0 × X 0
13 ovexd K DivRing X B 0 0 V
14 difss Base W 0 W Base W
15 2 14 eqsstri B Base W
16 15 sseli X B X Base W
17 16 adantl K DivRing X B X Base W
18 eqid Base K = Base K
19 eqid Base W = Base W
20 5 18 19 frlmbasf 0 0 V X Base W X : 0 0 Base K
21 13 17 20 syl2anc K DivRing X B X : 0 0 Base K
22 c0ex 0 V
23 22 snid 0 0
24 fz0sn 0 0 = 0
25 23 24 eleqtrri 0 0 0
26 25 a1i K DivRing X B 0 0 0
27 21 26 ffvelcdmd K DivRing X B X 0 Base K
28 5 18 19 frlmbasmap 0 0 V X Base W X Base K 0 0
29 13 17 28 syl2anc K DivRing X B X Base K 0 0
30 fvex Base K V
31 24 30 22 mapsnconst X Base K 0 0 X = 0 0 × X 0
32 29 31 syl K DivRing X B X = 0 0 × X 0
33 12 27 32 rspcedvdw K DivRing X B n Base K X = 0 0 × n
34 oveq1 m = n m · ˙ 1 ˙ = n · ˙ 1 ˙
35 34 eqeq2d m = n X = m · ˙ 1 ˙ X = n · ˙ 1 ˙
36 simprl K DivRing X B n Base K X = 0 0 × n n Base K
37 36 4 eleqtrrdi K DivRing X B n Base K X = 0 0 × n n S
38 ovexd K DivRing X B n Base K 0 0 V
39 simpr K DivRing X B n Base K n Base K
40 8 ad2antrr K DivRing X B n Base K 1 ˙ B
41 15 40 sselid K DivRing X B n Base K 1 ˙ Base W
42 eqid K = K
43 5 19 18 38 39 41 3 42 frlmvscafval K DivRing X B n Base K n · ˙ 1 ˙ = 0 0 × n K f 1 ˙
44 5 18 19 frlmbasf 0 0 V 1 ˙ Base W 1 ˙ : 0 0 Base K
45 38 41 44 syl2anc K DivRing X B n Base K 1 ˙ : 0 0 Base K
46 drngring K DivRing K Ring
47 eqid 1 K = 1 K
48 18 47 ringidcl K Ring 1 K Base K
49 46 48 syl K DivRing 1 K Base K
50 49 ad2antrr K DivRing X B n Base K 1 K Base K
51 50 snssd K DivRing X B n Base K 1 K Base K
52 6 a1i d 0 0 1 ˙ = K unitVec 0 0 0
53 elfz1eq d 0 0 d = 0
54 52 53 fveq12d d 0 0 1 ˙ d = K unitVec 0 0 0 0
55 54 adantl K DivRing X B n Base K d 0 0 1 ˙ d = K unitVec 0 0 0 0
56 eqid K unitVec 0 0 = K unitVec 0 0
57 simplll K DivRing X B n Base K d 0 0 K DivRing
58 ovexd K DivRing X B n Base K d 0 0 0 0 V
59 25 a1i K DivRing X B n Base K d 0 0 0 0 0
60 56 57 58 59 47 uvcvv1 K DivRing X B n Base K d 0 0 K unitVec 0 0 0 0 = 1 K
61 fvex K unitVec 0 0 0 0 V
62 61 elsn K unitVec 0 0 0 0 1 K K unitVec 0 0 0 0 = 1 K
63 60 62 sylibr K DivRing X B n Base K d 0 0 K unitVec 0 0 0 0 1 K
64 55 63 eqeltrd K DivRing X B n Base K d 0 0 1 ˙ d 1 K
65 64 ralrimiva K DivRing X B n Base K d 0 0 1 ˙ d 1 K
66 fcdmssb 1 K Base K d 0 0 1 ˙ d 1 K 1 ˙ : 0 0 Base K 1 ˙ : 0 0 1 K
67 51 65 66 syl2anc K DivRing X B n Base K 1 ˙ : 0 0 Base K 1 ˙ : 0 0 1 K
68 45 67 mpbid K DivRing X B n Base K 1 ˙ : 0 0 1 K
69 vex n V
70 69 a1i K DivRing X B n Base K n V
71 elsni c 1 K c = 1 K
72 71 oveq2d c 1 K n K c = n K 1 K
73 46 ad2antrr K DivRing X B n Base K K Ring
74 18 42 47 73 39 ringridmd K DivRing X B n Base K n K 1 K = n
75 72 74 sylan9eqr K DivRing X B n Base K c 1 K n K c = n
76 38 68 70 70 75 caofid2 K DivRing X B n Base K 0 0 × n K f 1 ˙ = 0 0 × n
77 43 76 eqtrd K DivRing X B n Base K n · ˙ 1 ˙ = 0 0 × n
78 77 eqeq2d K DivRing X B n Base K X = n · ˙ 1 ˙ X = 0 0 × n
79 78 biimprd K DivRing X B n Base K X = 0 0 × n X = n · ˙ 1 ˙
80 79 impr K DivRing X B n Base K X = 0 0 × n X = n · ˙ 1 ˙
81 35 37 80 rspcedvdw K DivRing X B n Base K X = 0 0 × n m S X = m · ˙ 1 ˙
82 33 81 rexlimddv K DivRing X B m S X = m · ˙ 1 ˙
83 1 prjsprel X ˙ 1 ˙ X B 1 ˙ B m S X = m · ˙ 1 ˙
84 7 9 82 83 syl21anbrc K DivRing X B X ˙ 1 ˙