Step |
Hyp |
Ref |
Expression |
1 |
|
0prjspnrel.e |
|
2 |
|
0prjspnrel.b |
|
3 |
|
0prjspnrel.x |
|
4 |
|
0prjspnrel.s |
|
5 |
|
0prjspnrel.w |
|
6 |
|
0prjspnrel.1 |
|
7 |
|
simpr |
|
8 |
2 5 6
|
0prjspnlem |
|
9 |
8
|
adantr |
|
10 |
|
ovexd |
|
11 |
|
difss |
|
12 |
2 11
|
eqsstri |
|
13 |
12
|
sseli |
|
14 |
13
|
adantl |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
5 15 16
|
frlmbasf |
|
18 |
10 14 17
|
syl2anc |
|
19 |
|
c0ex |
|
20 |
19
|
snid |
|
21 |
|
fz0sn |
|
22 |
20 21
|
eleqtrri |
|
23 |
22
|
a1i |
|
24 |
18 23
|
ffvelrnd |
|
25 |
|
sneq |
|
26 |
25
|
xpeq2d |
|
27 |
26
|
eqeq2d |
|
28 |
27
|
adantl |
|
29 |
5 15 16
|
frlmbasmap |
|
30 |
10 14 29
|
syl2anc |
|
31 |
|
fvex |
|
32 |
21 31 19
|
mapsnconst |
|
33 |
30 32
|
syl |
|
34 |
24 28 33
|
rspcedvd |
|
35 |
|
simprl |
|
36 |
35 4
|
eleqtrrdi |
|
37 |
|
oveq1 |
|
38 |
37
|
eqeq2d |
|
39 |
38
|
adantl |
|
40 |
|
ovexd |
|
41 |
|
simpr |
|
42 |
8
|
ad2antrr |
|
43 |
12 42
|
sselid |
|
44 |
|
eqid |
|
45 |
5 16 15 40 41 43 3 44
|
frlmvscafval |
|
46 |
5 15 16
|
frlmbasf |
|
47 |
40 43 46
|
syl2anc |
|
48 |
|
drngring |
|
49 |
|
eqid |
|
50 |
15 49
|
ringidcl |
|
51 |
48 50
|
syl |
|
52 |
51
|
ad2antrr |
|
53 |
52
|
snssd |
|
54 |
6
|
a1i |
|
55 |
|
elfz1eq |
|
56 |
54 55
|
fveq12d |
|
57 |
56
|
adantl |
|
58 |
|
eqid |
|
59 |
|
simplll |
|
60 |
|
ovexd |
|
61 |
22
|
a1i |
|
62 |
58 59 60 61 49
|
uvcvv1 |
|
63 |
|
fvex |
|
64 |
63
|
elsn |
|
65 |
62 64
|
sylibr |
|
66 |
57 65
|
eqeltrd |
|
67 |
66
|
ralrimiva |
|
68 |
|
frnssb |
|
69 |
53 67 68
|
syl2anc |
|
70 |
47 69
|
mpbid |
|
71 |
|
vex |
|
72 |
71
|
a1i |
|
73 |
|
elsni |
|
74 |
73
|
oveq2d |
|
75 |
48
|
ad2antrr |
|
76 |
15 44 49
|
ringridm |
|
77 |
75 41 76
|
syl2anc |
|
78 |
74 77
|
sylan9eqr |
|
79 |
40 70 72 72 78
|
caofid2 |
|
80 |
45 79
|
eqtrd |
|
81 |
80
|
eqeq2d |
|
82 |
81
|
biimprd |
|
83 |
82
|
impr |
|
84 |
36 39 83
|
rspcedvd |
|
85 |
34 84
|
rexlimddv |
|
86 |
1
|
prjsprel |
|
87 |
7 9 85 86
|
syl21anbrc |
|