Step |
Hyp |
Ref |
Expression |
1 |
|
0prjspnrel.e |
|
2 |
|
0prjspnrel.b |
|
3 |
|
0prjspnrel.x |
|
4 |
|
0prjspnrel.s |
|
5 |
|
0prjspnrel.w |
|
6 |
|
0prjspnrel.1 |
|
7 |
|
simpr |
|
8 |
2 5 6
|
0prjspnlem |
|
9 |
8
|
adantr |
|
10 |
|
sneq |
|
11 |
10
|
xpeq2d |
|
12 |
11
|
eqeq2d |
|
13 |
|
ovexd |
|
14 |
|
difss |
|
15 |
2 14
|
eqsstri |
|
16 |
15
|
sseli |
|
17 |
16
|
adantl |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
5 18 19
|
frlmbasf |
|
21 |
13 17 20
|
syl2anc |
|
22 |
|
c0ex |
|
23 |
22
|
snid |
|
24 |
|
fz0sn |
|
25 |
23 24
|
eleqtrri |
|
26 |
25
|
a1i |
|
27 |
21 26
|
ffvelcdmd |
|
28 |
5 18 19
|
frlmbasmap |
|
29 |
13 17 28
|
syl2anc |
|
30 |
|
fvex |
|
31 |
24 30 22
|
mapsnconst |
|
32 |
29 31
|
syl |
|
33 |
12 27 32
|
rspcedvdw |
|
34 |
|
oveq1 |
|
35 |
34
|
eqeq2d |
|
36 |
|
simprl |
|
37 |
36 4
|
eleqtrrdi |
|
38 |
|
ovexd |
|
39 |
|
simpr |
|
40 |
8
|
ad2antrr |
|
41 |
15 40
|
sselid |
|
42 |
|
eqid |
|
43 |
5 19 18 38 39 41 3 42
|
frlmvscafval |
|
44 |
5 18 19
|
frlmbasf |
|
45 |
38 41 44
|
syl2anc |
|
46 |
|
drngring |
|
47 |
|
eqid |
|
48 |
18 47
|
ringidcl |
|
49 |
46 48
|
syl |
|
50 |
49
|
ad2antrr |
|
51 |
50
|
snssd |
|
52 |
6
|
a1i |
|
53 |
|
elfz1eq |
|
54 |
52 53
|
fveq12d |
|
55 |
54
|
adantl |
|
56 |
|
eqid |
|
57 |
|
simplll |
|
58 |
|
ovexd |
|
59 |
25
|
a1i |
|
60 |
56 57 58 59 47
|
uvcvv1 |
|
61 |
|
fvex |
|
62 |
61
|
elsn |
|
63 |
60 62
|
sylibr |
|
64 |
55 63
|
eqeltrd |
|
65 |
64
|
ralrimiva |
|
66 |
|
fcdmssb |
|
67 |
51 65 66
|
syl2anc |
|
68 |
45 67
|
mpbid |
|
69 |
|
vex |
|
70 |
69
|
a1i |
|
71 |
|
elsni |
|
72 |
71
|
oveq2d |
|
73 |
46
|
ad2antrr |
|
74 |
18 42 47 73 39
|
ringridmd |
|
75 |
72 74
|
sylan9eqr |
|
76 |
38 68 70 70 75
|
caofid2 |
|
77 |
43 76
|
eqtrd |
|
78 |
77
|
eqeq2d |
|
79 |
78
|
biimprd |
|
80 |
79
|
impr |
|
81 |
35 37 80
|
rspcedvdw |
|
82 |
33 81
|
rexlimddv |
|
83 |
1
|
prjsprel |
|
84 |
7 9 82 83
|
syl21anbrc |
|