Metamath Proof Explorer


Theorem fcdmssb

Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021)

Ref Expression
Assertion fcdmssb VWkAFkVF:AWF:AV

Proof

Step Hyp Ref Expression
1 simpr VWkAFkVkAFkV
2 ffn F:AWFFnA
3 1 2 anim12ci VWkAFkVF:AWFFnAkAFkV
4 ffnfv F:AVFFnAkAFkV
5 3 4 sylibr VWkAFkVF:AWF:AV
6 simpl VWkAFkVVW
7 6 anim1ci VWkAFkVF:AVF:AVVW
8 fss F:AVVWF:AW
9 7 8 syl VWkAFkVF:AVF:AW
10 5 9 impbida VWkAFkVF:AWF:AV