Step |
Hyp |
Ref |
Expression |
1 |
|
drnginvmuld.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drnginvmuld.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drnginvmuld.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
drnginvmuld.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
5 |
|
drnginvmuld.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
6 |
|
drnginvmuld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
drnginvmuld.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
drnginvmuld.1 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
9 |
|
drnginvmuld.2 |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
10 |
5
|
drngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
11 |
1 3 10 6 7
|
ringcld |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
12 |
1 2 3 5 6 7
|
drngmulne0 |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) ≠ 0 ↔ ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ) ) |
13 |
8 9 12
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ≠ 0 ) |
14 |
1 2 4 5 11 13
|
drnginvrcld |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 · 𝑌 ) ) ∈ 𝐵 ) |
15 |
1 2 4 5 7 9
|
drnginvrcld |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) |
16 |
1 2 4 5 6 8
|
drnginvrcld |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
17 |
1 3 10 15 16
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑌 ) · ( 𝐼 ‘ 𝑋 ) ) ∈ 𝐵 ) |
18 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
19 |
1 2 3 18 4 5 6 8
|
drnginvrld |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) = ( ( 1r ‘ 𝑅 ) · 𝑌 ) ) |
21 |
1 3 18 10 7
|
ringlidmd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
22 |
20 21
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) = 𝑌 ) |
23 |
22
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑌 ) · ( ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) ) = ( ( 𝐼 ‘ 𝑌 ) · 𝑌 ) ) |
24 |
23
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑌 ) · 𝑌 ) = ( ( 𝐼 ‘ 𝑌 ) · ( ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) ) ) |
25 |
1 2 3 18 4 5 7 9
|
drnginvrld |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑌 ) · 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
26 |
1 3 10 16 6 7
|
ringassd |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) = ( ( 𝐼 ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑌 ) · ( ( ( 𝐼 ‘ 𝑋 ) · 𝑋 ) · 𝑌 ) ) = ( ( 𝐼 ‘ 𝑌 ) · ( ( 𝐼 ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) ) ) |
28 |
24 25 27
|
3eqtr3d |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( ( 𝐼 ‘ 𝑌 ) · ( ( 𝐼 ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) ) ) |
29 |
1 2 3 18 4 5 11 13
|
drnginvrld |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑋 · 𝑌 ) ) · ( 𝑋 · 𝑌 ) ) = ( 1r ‘ 𝑅 ) ) |
30 |
1 3 10 15 16 11
|
ringassd |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ 𝑌 ) · ( 𝐼 ‘ 𝑋 ) ) · ( 𝑋 · 𝑌 ) ) = ( ( 𝐼 ‘ 𝑌 ) · ( ( 𝐼 ‘ 𝑋 ) · ( 𝑋 · 𝑌 ) ) ) ) |
31 |
28 29 30
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑋 · 𝑌 ) ) · ( 𝑋 · 𝑌 ) ) = ( ( ( 𝐼 ‘ 𝑌 ) · ( 𝐼 ‘ 𝑋 ) ) · ( 𝑋 · 𝑌 ) ) ) |
32 |
1 2 3 5 14 17 11 13 31
|
drngmulcan2ad |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐼 ‘ 𝑌 ) · ( 𝐼 ‘ 𝑋 ) ) ) |