Metamath Proof Explorer


Theorem drngmulcan2ad

Description: Cancellation of a nonzero factor on the right for multiplication. ( mulcan2ad analog). (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses drngmulcanad.b 𝐵 = ( Base ‘ 𝑅 )
drngmulcanad.0 0 = ( 0g𝑅 )
drngmulcanad.t · = ( .r𝑅 )
drngmulcanad.r ( 𝜑𝑅 ∈ DivRing )
drngmulcanad.x ( 𝜑𝑋𝐵 )
drngmulcanad.y ( 𝜑𝑌𝐵 )
drngmulcanad.z ( 𝜑𝑍𝐵 )
drngmulcanad.1 ( 𝜑𝑍0 )
drngmulcan2ad.2 ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) )
Assertion drngmulcan2ad ( 𝜑𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 drngmulcanad.b 𝐵 = ( Base ‘ 𝑅 )
2 drngmulcanad.0 0 = ( 0g𝑅 )
3 drngmulcanad.t · = ( .r𝑅 )
4 drngmulcanad.r ( 𝜑𝑅 ∈ DivRing )
5 drngmulcanad.x ( 𝜑𝑋𝐵 )
6 drngmulcanad.y ( 𝜑𝑌𝐵 )
7 drngmulcanad.z ( 𝜑𝑍𝐵 )
8 drngmulcanad.1 ( 𝜑𝑍0 )
9 drngmulcan2ad.2 ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) )
10 9 oveq1d ( 𝜑 → ( ( 𝑋 · 𝑍 ) · ( ( invr𝑅 ) ‘ 𝑍 ) ) = ( ( 𝑌 · 𝑍 ) · ( ( invr𝑅 ) ‘ 𝑍 ) ) )
11 4 drngringd ( 𝜑𝑅 ∈ Ring )
12 eqid ( invr𝑅 ) = ( invr𝑅 )
13 1 2 12 4 7 8 drnginvrcld ( 𝜑 → ( ( invr𝑅 ) ‘ 𝑍 ) ∈ 𝐵 )
14 1 3 11 5 7 13 ringassd ( 𝜑 → ( ( 𝑋 · 𝑍 ) · ( ( invr𝑅 ) ‘ 𝑍 ) ) = ( 𝑋 · ( 𝑍 · ( ( invr𝑅 ) ‘ 𝑍 ) ) ) )
15 eqid ( 1r𝑅 ) = ( 1r𝑅 )
16 1 2 3 15 12 4 7 8 drnginvrrd ( 𝜑 → ( 𝑍 · ( ( invr𝑅 ) ‘ 𝑍 ) ) = ( 1r𝑅 ) )
17 16 oveq2d ( 𝜑 → ( 𝑋 · ( 𝑍 · ( ( invr𝑅 ) ‘ 𝑍 ) ) ) = ( 𝑋 · ( 1r𝑅 ) ) )
18 1 3 15 11 5 ringridmd ( 𝜑 → ( 𝑋 · ( 1r𝑅 ) ) = 𝑋 )
19 14 17 18 3eqtrd ( 𝜑 → ( ( 𝑋 · 𝑍 ) · ( ( invr𝑅 ) ‘ 𝑍 ) ) = 𝑋 )
20 1 3 11 6 7 13 ringassd ( 𝜑 → ( ( 𝑌 · 𝑍 ) · ( ( invr𝑅 ) ‘ 𝑍 ) ) = ( 𝑌 · ( 𝑍 · ( ( invr𝑅 ) ‘ 𝑍 ) ) ) )
21 16 oveq2d ( 𝜑 → ( 𝑌 · ( 𝑍 · ( ( invr𝑅 ) ‘ 𝑍 ) ) ) = ( 𝑌 · ( 1r𝑅 ) ) )
22 1 3 15 11 6 ringridmd ( 𝜑 → ( 𝑌 · ( 1r𝑅 ) ) = 𝑌 )
23 20 21 22 3eqtrd ( 𝜑 → ( ( 𝑌 · 𝑍 ) · ( ( invr𝑅 ) ‘ 𝑍 ) ) = 𝑌 )
24 10 19 23 3eqtr3d ( 𝜑𝑋 = 𝑌 )