Step |
Hyp |
Ref |
Expression |
1 |
|
drngmulcanad.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drngmulcanad.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drngmulcanad.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
drngmulcanad.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
5 |
|
drngmulcanad.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
drngmulcanad.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
drngmulcanad.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
drngmulcanad.1 |
⊢ ( 𝜑 → 𝑍 ≠ 0 ) |
9 |
|
drngmulcan2ad.2 |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( ( 𝑌 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) |
11 |
4
|
drngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
12 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
13 |
1 2 12 4 7 8
|
drnginvrcld |
⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) |
14 |
1 3 11 5 7 13
|
ringassd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( 𝑋 · ( 𝑍 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
15 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
16 |
1 2 3 15 12 4 7 8
|
drnginvrrd |
⊢ ( 𝜑 → ( 𝑍 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( 1r ‘ 𝑅 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑍 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) = ( 𝑋 · ( 1r ‘ 𝑅 ) ) ) |
18 |
1 3 15 11 5
|
ringridmd |
⊢ ( 𝜑 → ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
19 |
14 17 18
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = 𝑋 ) |
20 |
1 3 11 6 7 13
|
ringassd |
⊢ ( 𝜑 → ( ( 𝑌 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = ( 𝑌 · ( 𝑍 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) ) |
21 |
16
|
oveq2d |
⊢ ( 𝜑 → ( 𝑌 · ( 𝑍 · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) ) = ( 𝑌 · ( 1r ‘ 𝑅 ) ) ) |
22 |
1 3 15 11 6
|
ringridmd |
⊢ ( 𝜑 → ( 𝑌 · ( 1r ‘ 𝑅 ) ) = 𝑌 ) |
23 |
20 21 22
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑌 · 𝑍 ) · ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ) = 𝑌 ) |
24 |
10 19 23
|
3eqtr3d |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |