Step |
Hyp |
Ref |
Expression |
1 |
|
drngmulcanad.b |
|- B = ( Base ` R ) |
2 |
|
drngmulcanad.0 |
|- .0. = ( 0g ` R ) |
3 |
|
drngmulcanad.t |
|- .x. = ( .r ` R ) |
4 |
|
drngmulcanad.r |
|- ( ph -> R e. DivRing ) |
5 |
|
drngmulcanad.x |
|- ( ph -> X e. B ) |
6 |
|
drngmulcanad.y |
|- ( ph -> Y e. B ) |
7 |
|
drngmulcanad.z |
|- ( ph -> Z e. B ) |
8 |
|
drngmulcanad.1 |
|- ( ph -> Z =/= .0. ) |
9 |
|
drngmulcan2ad.2 |
|- ( ph -> ( X .x. Z ) = ( Y .x. Z ) ) |
10 |
9
|
oveq1d |
|- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` Z ) ) = ( ( Y .x. Z ) .x. ( ( invr ` R ) ` Z ) ) ) |
11 |
4
|
drngringd |
|- ( ph -> R e. Ring ) |
12 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
13 |
1 2 12 4 7 8
|
drnginvrcld |
|- ( ph -> ( ( invr ` R ) ` Z ) e. B ) |
14 |
1 3 11 5 7 13
|
ringassd |
|- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` Z ) ) = ( X .x. ( Z .x. ( ( invr ` R ) ` Z ) ) ) ) |
15 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
16 |
1 2 3 15 12 4 7 8
|
drnginvrrd |
|- ( ph -> ( Z .x. ( ( invr ` R ) ` Z ) ) = ( 1r ` R ) ) |
17 |
16
|
oveq2d |
|- ( ph -> ( X .x. ( Z .x. ( ( invr ` R ) ` Z ) ) ) = ( X .x. ( 1r ` R ) ) ) |
18 |
1 3 15 11 5
|
ringridmd |
|- ( ph -> ( X .x. ( 1r ` R ) ) = X ) |
19 |
14 17 18
|
3eqtrd |
|- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` Z ) ) = X ) |
20 |
1 3 11 6 7 13
|
ringassd |
|- ( ph -> ( ( Y .x. Z ) .x. ( ( invr ` R ) ` Z ) ) = ( Y .x. ( Z .x. ( ( invr ` R ) ` Z ) ) ) ) |
21 |
16
|
oveq2d |
|- ( ph -> ( Y .x. ( Z .x. ( ( invr ` R ) ` Z ) ) ) = ( Y .x. ( 1r ` R ) ) ) |
22 |
1 3 15 11 6
|
ringridmd |
|- ( ph -> ( Y .x. ( 1r ` R ) ) = Y ) |
23 |
20 21 22
|
3eqtrd |
|- ( ph -> ( ( Y .x. Z ) .x. ( ( invr ` R ) ` Z ) ) = Y ) |
24 |
10 19 23
|
3eqtr3d |
|- ( ph -> X = Y ) |