Description: Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drnginvmuld.b | |
|
drnginvmuld.z | |
||
drnginvmuld.t | |
||
drnginvmuld.i | |
||
drnginvmuld.r | |
||
drnginvmuld.x | |
||
drnginvmuld.y | |
||
drnginvmuld.1 | |
||
drnginvmuld.2 | |
||
Assertion | drnginvmuld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnginvmuld.b | |
|
2 | drnginvmuld.z | |
|
3 | drnginvmuld.t | |
|
4 | drnginvmuld.i | |
|
5 | drnginvmuld.r | |
|
6 | drnginvmuld.x | |
|
7 | drnginvmuld.y | |
|
8 | drnginvmuld.1 | |
|
9 | drnginvmuld.2 | |
|
10 | 5 | drngringd | |
11 | 1 3 10 6 7 | ringcld | |
12 | 1 2 3 5 6 7 | drngmulne0 | |
13 | 8 9 12 | mpbir2and | |
14 | 1 2 4 5 11 13 | drnginvrcld | |
15 | 1 2 4 5 7 9 | drnginvrcld | |
16 | 1 2 4 5 6 8 | drnginvrcld | |
17 | 1 3 10 15 16 | ringcld | |
18 | eqid | |
|
19 | 1 2 3 18 4 5 6 8 | drnginvrld | |
20 | 19 | oveq1d | |
21 | 1 3 18 10 7 | ringlidmd | |
22 | 20 21 | eqtrd | |
23 | 22 | oveq2d | |
24 | 23 | eqcomd | |
25 | 1 2 3 18 4 5 7 9 | drnginvrld | |
26 | 1 3 10 16 6 7 | ringassd | |
27 | 26 | oveq2d | |
28 | 24 25 27 | 3eqtr3d | |
29 | 1 2 3 18 4 5 11 13 | drnginvrld | |
30 | 1 3 10 15 16 11 | ringassd | |
31 | 28 29 30 | 3eqtr4d | |
32 | 1 2 3 5 14 17 11 13 31 | drngmulcan2ad | |