Metamath Proof Explorer


Theorem drnginvmuld

Description: Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses drnginvmuld.b B=BaseR
drnginvmuld.z 0˙=0R
drnginvmuld.t ·˙=R
drnginvmuld.i I=invrR
drnginvmuld.r φRDivRing
drnginvmuld.x φXB
drnginvmuld.y φYB
drnginvmuld.1 φX0˙
drnginvmuld.2 φY0˙
Assertion drnginvmuld φIX·˙Y=IY·˙IX

Proof

Step Hyp Ref Expression
1 drnginvmuld.b B=BaseR
2 drnginvmuld.z 0˙=0R
3 drnginvmuld.t ·˙=R
4 drnginvmuld.i I=invrR
5 drnginvmuld.r φRDivRing
6 drnginvmuld.x φXB
7 drnginvmuld.y φYB
8 drnginvmuld.1 φX0˙
9 drnginvmuld.2 φY0˙
10 5 drngringd φRRing
11 1 3 10 6 7 ringcld φX·˙YB
12 1 2 3 5 6 7 drngmulne0 φX·˙Y0˙X0˙Y0˙
13 8 9 12 mpbir2and φX·˙Y0˙
14 1 2 4 5 11 13 drnginvrcld φIX·˙YB
15 1 2 4 5 7 9 drnginvrcld φIYB
16 1 2 4 5 6 8 drnginvrcld φIXB
17 1 3 10 15 16 ringcld φIY·˙IXB
18 eqid 1R=1R
19 1 2 3 18 4 5 6 8 drnginvrld φIX·˙X=1R
20 19 oveq1d φIX·˙X·˙Y=1R·˙Y
21 1 3 18 10 7 ringlidmd φ1R·˙Y=Y
22 20 21 eqtrd φIX·˙X·˙Y=Y
23 22 oveq2d φIY·˙IX·˙X·˙Y=IY·˙Y
24 23 eqcomd φIY·˙Y=IY·˙IX·˙X·˙Y
25 1 2 3 18 4 5 7 9 drnginvrld φIY·˙Y=1R
26 1 3 10 16 6 7 ringassd φIX·˙X·˙Y=IX·˙X·˙Y
27 26 oveq2d φIY·˙IX·˙X·˙Y=IY·˙IX·˙X·˙Y
28 24 25 27 3eqtr3d φ1R=IY·˙IX·˙X·˙Y
29 1 2 3 18 4 5 11 13 drnginvrld φIX·˙Y·˙X·˙Y=1R
30 1 3 10 15 16 11 ringassd φIY·˙IX·˙X·˙Y=IY·˙IX·˙X·˙Y
31 28 29 30 3eqtr4d φIX·˙Y·˙X·˙Y=IY·˙IX·˙X·˙Y
32 1 2 3 5 14 17 11 13 31 drngmulcan2ad φIX·˙Y=IY·˙IX