| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brric |
|
| 2 |
|
n0 |
|
| 3 |
1 2
|
bitri |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
4 5
|
rimf1o |
|
| 7 |
|
f1ofo |
|
| 8 |
|
foima |
|
| 9 |
6 7 8
|
3syl |
|
| 10 |
9
|
oveq2d |
|
| 11 |
|
rimrcl2 |
|
| 12 |
5
|
ressid |
|
| 13 |
11 12
|
syl |
|
| 14 |
10 13
|
eqtr2d |
|
| 15 |
14
|
adantr |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
|
rimrhm |
|
| 19 |
18
|
adantr |
|
| 20 |
4
|
sdrgid |
|
| 21 |
20
|
adantl |
|
| 22 |
|
forn |
|
| 23 |
6 7 22
|
3syl |
|
| 24 |
23
|
adantr |
|
| 25 |
|
rhmrcl2 |
|
| 26 |
|
eqid |
|
| 27 |
5 26
|
ringidcl |
|
| 28 |
18 25 27
|
3syl |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
29 30
|
drngunz |
|
| 32 |
31
|
adantl |
|
| 33 |
|
f1of1 |
|
| 34 |
6 33
|
syl |
|
| 35 |
|
drngring |
|
| 36 |
4 30
|
ringidcl |
|
| 37 |
35 36
|
syl |
|
| 38 |
4 29
|
ring0cl |
|
| 39 |
35 38
|
syl |
|
| 40 |
37 39
|
jca |
|
| 41 |
|
f1veqaeq |
|
| 42 |
34 40 41
|
syl2an |
|
| 43 |
42
|
imp |
|
| 44 |
32 43
|
mteqand |
|
| 45 |
30 26
|
rhm1 |
|
| 46 |
19 45
|
syl |
|
| 47 |
|
rhmghm |
|
| 48 |
29 17
|
ghmid |
|
| 49 |
19 47 48
|
3syl |
|
| 50 |
44 46 49
|
3netr3d |
|
| 51 |
|
nelsn |
|
| 52 |
50 51
|
syl |
|
| 53 |
|
nelne1 |
|
| 54 |
28 52 53
|
syl2an2r |
|
| 55 |
24 54
|
eqnetrd |
|
| 56 |
16 17 19 21 55
|
imadrhmcl |
|
| 57 |
15 56
|
eqeltrd |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
exlimiv |
|
| 60 |
59
|
imp |
|
| 61 |
3 60
|
sylanb |
|