Step |
Hyp |
Ref |
Expression |
1 |
|
brric |
|- ( R ~=r S <-> ( R RingIso S ) =/= (/) ) |
2 |
|
n0 |
|- ( ( R RingIso S ) =/= (/) <-> E. f f e. ( R RingIso S ) ) |
3 |
1 2
|
bitri |
|- ( R ~=r S <-> E. f f e. ( R RingIso S ) ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
6 |
4 5
|
rimf1o |
|- ( f e. ( R RingIso S ) -> f : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) |
7 |
|
f1ofo |
|- ( f : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> f : ( Base ` R ) -onto-> ( Base ` S ) ) |
8 |
|
foima |
|- ( f : ( Base ` R ) -onto-> ( Base ` S ) -> ( f " ( Base ` R ) ) = ( Base ` S ) ) |
9 |
6 7 8
|
3syl |
|- ( f e. ( R RingIso S ) -> ( f " ( Base ` R ) ) = ( Base ` S ) ) |
10 |
9
|
oveq2d |
|- ( f e. ( R RingIso S ) -> ( S |`s ( f " ( Base ` R ) ) ) = ( S |`s ( Base ` S ) ) ) |
11 |
|
rimrcl2 |
|- ( f e. ( R RingIso S ) -> S e. Ring ) |
12 |
5
|
ressid |
|- ( S e. Ring -> ( S |`s ( Base ` S ) ) = S ) |
13 |
11 12
|
syl |
|- ( f e. ( R RingIso S ) -> ( S |`s ( Base ` S ) ) = S ) |
14 |
10 13
|
eqtr2d |
|- ( f e. ( R RingIso S ) -> S = ( S |`s ( f " ( Base ` R ) ) ) ) |
15 |
14
|
adantr |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> S = ( S |`s ( f " ( Base ` R ) ) ) ) |
16 |
|
eqid |
|- ( S |`s ( f " ( Base ` R ) ) ) = ( S |`s ( f " ( Base ` R ) ) ) |
17 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
18 |
|
rimrhm |
|- ( f e. ( R RingIso S ) -> f e. ( R RingHom S ) ) |
19 |
18
|
adantr |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> f e. ( R RingHom S ) ) |
20 |
4
|
sdrgid |
|- ( R e. DivRing -> ( Base ` R ) e. ( SubDRing ` R ) ) |
21 |
20
|
adantl |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( Base ` R ) e. ( SubDRing ` R ) ) |
22 |
|
forn |
|- ( f : ( Base ` R ) -onto-> ( Base ` S ) -> ran f = ( Base ` S ) ) |
23 |
6 7 22
|
3syl |
|- ( f e. ( R RingIso S ) -> ran f = ( Base ` S ) ) |
24 |
23
|
adantr |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ran f = ( Base ` S ) ) |
25 |
|
rhmrcl2 |
|- ( f e. ( R RingHom S ) -> S e. Ring ) |
26 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
27 |
5 26
|
ringidcl |
|- ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) ) |
28 |
18 25 27
|
3syl |
|- ( f e. ( R RingIso S ) -> ( 1r ` S ) e. ( Base ` S ) ) |
29 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
30 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
31 |
29 30
|
drngunz |
|- ( R e. DivRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
32 |
31
|
adantl |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
33 |
|
f1of1 |
|- ( f : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> f : ( Base ` R ) -1-1-> ( Base ` S ) ) |
34 |
6 33
|
syl |
|- ( f e. ( R RingIso S ) -> f : ( Base ` R ) -1-1-> ( Base ` S ) ) |
35 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
36 |
4 30
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
37 |
35 36
|
syl |
|- ( R e. DivRing -> ( 1r ` R ) e. ( Base ` R ) ) |
38 |
4 29
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
39 |
35 38
|
syl |
|- ( R e. DivRing -> ( 0g ` R ) e. ( Base ` R ) ) |
40 |
37 39
|
jca |
|- ( R e. DivRing -> ( ( 1r ` R ) e. ( Base ` R ) /\ ( 0g ` R ) e. ( Base ` R ) ) ) |
41 |
|
f1veqaeq |
|- ( ( f : ( Base ` R ) -1-1-> ( Base ` S ) /\ ( ( 1r ` R ) e. ( Base ` R ) /\ ( 0g ` R ) e. ( Base ` R ) ) ) -> ( ( f ` ( 1r ` R ) ) = ( f ` ( 0g ` R ) ) -> ( 1r ` R ) = ( 0g ` R ) ) ) |
42 |
34 40 41
|
syl2an |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( ( f ` ( 1r ` R ) ) = ( f ` ( 0g ` R ) ) -> ( 1r ` R ) = ( 0g ` R ) ) ) |
43 |
42
|
imp |
|- ( ( ( f e. ( R RingIso S ) /\ R e. DivRing ) /\ ( f ` ( 1r ` R ) ) = ( f ` ( 0g ` R ) ) ) -> ( 1r ` R ) = ( 0g ` R ) ) |
44 |
32 43
|
mteqand |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( f ` ( 1r ` R ) ) =/= ( f ` ( 0g ` R ) ) ) |
45 |
30 26
|
rhm1 |
|- ( f e. ( R RingHom S ) -> ( f ` ( 1r ` R ) ) = ( 1r ` S ) ) |
46 |
19 45
|
syl |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( f ` ( 1r ` R ) ) = ( 1r ` S ) ) |
47 |
|
rhmghm |
|- ( f e. ( R RingHom S ) -> f e. ( R GrpHom S ) ) |
48 |
29 17
|
ghmid |
|- ( f e. ( R GrpHom S ) -> ( f ` ( 0g ` R ) ) = ( 0g ` S ) ) |
49 |
19 47 48
|
3syl |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( f ` ( 0g ` R ) ) = ( 0g ` S ) ) |
50 |
44 46 49
|
3netr3d |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( 1r ` S ) =/= ( 0g ` S ) ) |
51 |
|
nelsn |
|- ( ( 1r ` S ) =/= ( 0g ` S ) -> -. ( 1r ` S ) e. { ( 0g ` S ) } ) |
52 |
50 51
|
syl |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> -. ( 1r ` S ) e. { ( 0g ` S ) } ) |
53 |
|
nelne1 |
|- ( ( ( 1r ` S ) e. ( Base ` S ) /\ -. ( 1r ` S ) e. { ( 0g ` S ) } ) -> ( Base ` S ) =/= { ( 0g ` S ) } ) |
54 |
28 52 53
|
syl2an2r |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( Base ` S ) =/= { ( 0g ` S ) } ) |
55 |
24 54
|
eqnetrd |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ran f =/= { ( 0g ` S ) } ) |
56 |
16 17 19 21 55
|
imadrhmcl |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( S |`s ( f " ( Base ` R ) ) ) e. DivRing ) |
57 |
15 56
|
eqeltrd |
|- ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> S e. DivRing ) |
58 |
57
|
ex |
|- ( f e. ( R RingIso S ) -> ( R e. DivRing -> S e. DivRing ) ) |
59 |
58
|
exlimiv |
|- ( E. f f e. ( R RingIso S ) -> ( R e. DivRing -> S e. DivRing ) ) |
60 |
59
|
imp |
|- ( ( E. f f e. ( R RingIso S ) /\ R e. DivRing ) -> S e. DivRing ) |
61 |
3 60
|
sylanb |
|- ( ( R ~=r S /\ R e. DivRing ) -> S e. DivRing ) |