Metamath Proof Explorer


Theorem ricdrng1

Description: A ring isomorphism maps a division ring to a division ring. (Contributed by SN, 18-Feb-2025)

Ref Expression
Assertion ricdrng1
|- ( ( R ~=r S /\ R e. DivRing ) -> S e. DivRing )

Proof

Step Hyp Ref Expression
1 brric
 |-  ( R ~=r S <-> ( R RingIso S ) =/= (/) )
2 n0
 |-  ( ( R RingIso S ) =/= (/) <-> E. f f e. ( R RingIso S ) )
3 1 2 bitri
 |-  ( R ~=r S <-> E. f f e. ( R RingIso S ) )
4 eqid
 |-  ( Base ` R ) = ( Base ` R )
5 eqid
 |-  ( Base ` S ) = ( Base ` S )
6 4 5 rimf1o
 |-  ( f e. ( R RingIso S ) -> f : ( Base ` R ) -1-1-onto-> ( Base ` S ) )
7 f1ofo
 |-  ( f : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> f : ( Base ` R ) -onto-> ( Base ` S ) )
8 foima
 |-  ( f : ( Base ` R ) -onto-> ( Base ` S ) -> ( f " ( Base ` R ) ) = ( Base ` S ) )
9 6 7 8 3syl
 |-  ( f e. ( R RingIso S ) -> ( f " ( Base ` R ) ) = ( Base ` S ) )
10 9 oveq2d
 |-  ( f e. ( R RingIso S ) -> ( S |`s ( f " ( Base ` R ) ) ) = ( S |`s ( Base ` S ) ) )
11 rimrcl2
 |-  ( f e. ( R RingIso S ) -> S e. Ring )
12 5 ressid
 |-  ( S e. Ring -> ( S |`s ( Base ` S ) ) = S )
13 11 12 syl
 |-  ( f e. ( R RingIso S ) -> ( S |`s ( Base ` S ) ) = S )
14 10 13 eqtr2d
 |-  ( f e. ( R RingIso S ) -> S = ( S |`s ( f " ( Base ` R ) ) ) )
15 14 adantr
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> S = ( S |`s ( f " ( Base ` R ) ) ) )
16 eqid
 |-  ( S |`s ( f " ( Base ` R ) ) ) = ( S |`s ( f " ( Base ` R ) ) )
17 eqid
 |-  ( 0g ` S ) = ( 0g ` S )
18 rimrhm
 |-  ( f e. ( R RingIso S ) -> f e. ( R RingHom S ) )
19 18 adantr
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> f e. ( R RingHom S ) )
20 4 sdrgid
 |-  ( R e. DivRing -> ( Base ` R ) e. ( SubDRing ` R ) )
21 20 adantl
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( Base ` R ) e. ( SubDRing ` R ) )
22 forn
 |-  ( f : ( Base ` R ) -onto-> ( Base ` S ) -> ran f = ( Base ` S ) )
23 6 7 22 3syl
 |-  ( f e. ( R RingIso S ) -> ran f = ( Base ` S ) )
24 23 adantr
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ran f = ( Base ` S ) )
25 rhmrcl2
 |-  ( f e. ( R RingHom S ) -> S e. Ring )
26 eqid
 |-  ( 1r ` S ) = ( 1r ` S )
27 5 26 ringidcl
 |-  ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) )
28 18 25 27 3syl
 |-  ( f e. ( R RingIso S ) -> ( 1r ` S ) e. ( Base ` S ) )
29 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
30 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
31 29 30 drngunz
 |-  ( R e. DivRing -> ( 1r ` R ) =/= ( 0g ` R ) )
32 31 adantl
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( 1r ` R ) =/= ( 0g ` R ) )
33 f1of1
 |-  ( f : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> f : ( Base ` R ) -1-1-> ( Base ` S ) )
34 6 33 syl
 |-  ( f e. ( R RingIso S ) -> f : ( Base ` R ) -1-1-> ( Base ` S ) )
35 drngring
 |-  ( R e. DivRing -> R e. Ring )
36 4 30 ringidcl
 |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) )
37 35 36 syl
 |-  ( R e. DivRing -> ( 1r ` R ) e. ( Base ` R ) )
38 4 29 ring0cl
 |-  ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) )
39 35 38 syl
 |-  ( R e. DivRing -> ( 0g ` R ) e. ( Base ` R ) )
40 37 39 jca
 |-  ( R e. DivRing -> ( ( 1r ` R ) e. ( Base ` R ) /\ ( 0g ` R ) e. ( Base ` R ) ) )
41 f1veqaeq
 |-  ( ( f : ( Base ` R ) -1-1-> ( Base ` S ) /\ ( ( 1r ` R ) e. ( Base ` R ) /\ ( 0g ` R ) e. ( Base ` R ) ) ) -> ( ( f ` ( 1r ` R ) ) = ( f ` ( 0g ` R ) ) -> ( 1r ` R ) = ( 0g ` R ) ) )
42 34 40 41 syl2an
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( ( f ` ( 1r ` R ) ) = ( f ` ( 0g ` R ) ) -> ( 1r ` R ) = ( 0g ` R ) ) )
43 42 imp
 |-  ( ( ( f e. ( R RingIso S ) /\ R e. DivRing ) /\ ( f ` ( 1r ` R ) ) = ( f ` ( 0g ` R ) ) ) -> ( 1r ` R ) = ( 0g ` R ) )
44 32 43 mteqand
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( f ` ( 1r ` R ) ) =/= ( f ` ( 0g ` R ) ) )
45 30 26 rhm1
 |-  ( f e. ( R RingHom S ) -> ( f ` ( 1r ` R ) ) = ( 1r ` S ) )
46 19 45 syl
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( f ` ( 1r ` R ) ) = ( 1r ` S ) )
47 rhmghm
 |-  ( f e. ( R RingHom S ) -> f e. ( R GrpHom S ) )
48 29 17 ghmid
 |-  ( f e. ( R GrpHom S ) -> ( f ` ( 0g ` R ) ) = ( 0g ` S ) )
49 19 47 48 3syl
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( f ` ( 0g ` R ) ) = ( 0g ` S ) )
50 44 46 49 3netr3d
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( 1r ` S ) =/= ( 0g ` S ) )
51 nelsn
 |-  ( ( 1r ` S ) =/= ( 0g ` S ) -> -. ( 1r ` S ) e. { ( 0g ` S ) } )
52 50 51 syl
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> -. ( 1r ` S ) e. { ( 0g ` S ) } )
53 nelne1
 |-  ( ( ( 1r ` S ) e. ( Base ` S ) /\ -. ( 1r ` S ) e. { ( 0g ` S ) } ) -> ( Base ` S ) =/= { ( 0g ` S ) } )
54 28 52 53 syl2an2r
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( Base ` S ) =/= { ( 0g ` S ) } )
55 24 54 eqnetrd
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ran f =/= { ( 0g ` S ) } )
56 16 17 19 21 55 imadrhmcl
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> ( S |`s ( f " ( Base ` R ) ) ) e. DivRing )
57 15 56 eqeltrd
 |-  ( ( f e. ( R RingIso S ) /\ R e. DivRing ) -> S e. DivRing )
58 57 ex
 |-  ( f e. ( R RingIso S ) -> ( R e. DivRing -> S e. DivRing ) )
59 58 exlimiv
 |-  ( E. f f e. ( R RingIso S ) -> ( R e. DivRing -> S e. DivRing ) )
60 59 imp
 |-  ( ( E. f f e. ( R RingIso S ) /\ R e. DivRing ) -> S e. DivRing )
61 3 60 sylanb
 |-  ( ( R ~=r S /\ R e. DivRing ) -> S e. DivRing )