| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brric |
⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( 𝑅 RingIso 𝑆 ) ≠ ∅ ) |
| 2 |
|
n0 |
⊢ ( ( 𝑅 RingIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) |
| 3 |
1 2
|
bitri |
⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 6 |
4 5
|
rimf1o |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑓 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) |
| 7 |
|
f1ofo |
⊢ ( 𝑓 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → 𝑓 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) ) |
| 8 |
|
foima |
⊢ ( 𝑓 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) → ( 𝑓 “ ( Base ‘ 𝑅 ) ) = ( Base ‘ 𝑆 ) ) |
| 9 |
6 7 8
|
3syl |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑓 “ ( Base ‘ 𝑅 ) ) = ( Base ‘ 𝑆 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) = ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) |
| 11 |
|
rimrcl2 |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑆 ∈ Ring ) |
| 12 |
5
|
ressid |
⊢ ( 𝑆 ∈ Ring → ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = 𝑆 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = 𝑆 ) |
| 14 |
10 13
|
eqtr2d |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑆 = ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → 𝑆 = ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) ) |
| 16 |
|
eqid |
⊢ ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) = ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) |
| 17 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 18 |
|
rimrhm |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 20 |
4
|
sdrgid |
⊢ ( 𝑅 ∈ DivRing → ( Base ‘ 𝑅 ) ∈ ( SubDRing ‘ 𝑅 ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( Base ‘ 𝑅 ) ∈ ( SubDRing ‘ 𝑅 ) ) |
| 22 |
|
forn |
⊢ ( 𝑓 : ( Base ‘ 𝑅 ) –onto→ ( Base ‘ 𝑆 ) → ran 𝑓 = ( Base ‘ 𝑆 ) ) |
| 23 |
6 7 22
|
3syl |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ran 𝑓 = ( Base ‘ 𝑆 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ran 𝑓 = ( Base ‘ 𝑆 ) ) |
| 25 |
|
rhmrcl2 |
⊢ ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
| 26 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 27 |
5 26
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 28 |
18 25 27
|
3syl |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 29 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 30 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 31 |
29 30
|
drngunz |
⊢ ( 𝑅 ∈ DivRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 33 |
|
f1of1 |
⊢ ( 𝑓 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → 𝑓 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ) |
| 34 |
6 33
|
syl |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑓 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ) |
| 35 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
| 36 |
4 30
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 38 |
4 29
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 39 |
35 38
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 40 |
37 39
|
jca |
⊢ ( 𝑅 ∈ DivRing → ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 41 |
|
f1veqaeq |
⊢ ( ( 𝑓 : ( Base ‘ 𝑅 ) –1-1→ ( Base ‘ 𝑆 ) ∧ ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) = ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
| 42 |
34 40 41
|
syl2an |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) = ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
| 43 |
42
|
imp |
⊢ ( ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) = ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) ) → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
| 44 |
32 43
|
mteqand |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) ≠ ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) ) |
| 45 |
30 26
|
rhm1 |
⊢ ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 46 |
19 45
|
syl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 𝑓 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 47 |
|
rhmghm |
⊢ ( 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑓 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 48 |
29 17
|
ghmid |
⊢ ( 𝑓 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 49 |
19 47 48
|
3syl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 𝑓 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 50 |
44 46 49
|
3netr3d |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) |
| 51 |
|
nelsn |
⊢ ( ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) → ¬ ( 1r ‘ 𝑆 ) ∈ { ( 0g ‘ 𝑆 ) } ) |
| 52 |
50 51
|
syl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ¬ ( 1r ‘ 𝑆 ) ∈ { ( 0g ‘ 𝑆 ) } ) |
| 53 |
|
nelne1 |
⊢ ( ( ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ∧ ¬ ( 1r ‘ 𝑆 ) ∈ { ( 0g ‘ 𝑆 ) } ) → ( Base ‘ 𝑆 ) ≠ { ( 0g ‘ 𝑆 ) } ) |
| 54 |
28 52 53
|
syl2an2r |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( Base ‘ 𝑆 ) ≠ { ( 0g ‘ 𝑆 ) } ) |
| 55 |
24 54
|
eqnetrd |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ran 𝑓 ≠ { ( 0g ‘ 𝑆 ) } ) |
| 56 |
16 17 19 21 55
|
imadrhmcl |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → ( 𝑆 ↾s ( 𝑓 “ ( Base ‘ 𝑅 ) ) ) ∈ DivRing ) |
| 57 |
15 56
|
eqeltrd |
⊢ ( ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → 𝑆 ∈ DivRing ) |
| 58 |
57
|
ex |
⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ DivRing → 𝑆 ∈ DivRing ) ) |
| 59 |
58
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ DivRing → 𝑆 ∈ DivRing ) ) |
| 60 |
59
|
imp |
⊢ ( ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ∧ 𝑅 ∈ DivRing ) → 𝑆 ∈ DivRing ) |
| 61 |
3 60
|
sylanb |
⊢ ( ( 𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ DivRing ) → 𝑆 ∈ DivRing ) |