Description: A ring is a division ring if and only if an isomorphic ring is a division ring. (Contributed by SN, 18-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ricdrng | ⊢ ( 𝑅 ≃𝑟 𝑆 → ( 𝑅 ∈ DivRing ↔ 𝑆 ∈ DivRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ricdrng1 | ⊢ ( ( 𝑅 ≃𝑟 𝑆 ∧ 𝑅 ∈ DivRing ) → 𝑆 ∈ DivRing ) | |
| 2 | ricsym | ⊢ ( 𝑅 ≃𝑟 𝑆 → 𝑆 ≃𝑟 𝑅 ) | |
| 3 | ricdrng1 | ⊢ ( ( 𝑆 ≃𝑟 𝑅 ∧ 𝑆 ∈ DivRing ) → 𝑅 ∈ DivRing ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝑅 ≃𝑟 𝑆 ∧ 𝑆 ∈ DivRing ) → 𝑅 ∈ DivRing ) |
| 5 | 1 4 | impbida | ⊢ ( 𝑅 ≃𝑟 𝑆 → ( 𝑅 ∈ DivRing ↔ 𝑆 ∈ DivRing ) ) |