Description: A ring is a field if and only if an isomorphic ring is a field. (Contributed by SN, 18-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ricfld | ⊢ ( 𝑅 ≃𝑟 𝑆 → ( 𝑅 ∈ Field ↔ 𝑆 ∈ Field ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ricdrng | ⊢ ( 𝑅 ≃𝑟 𝑆 → ( 𝑅 ∈ DivRing ↔ 𝑆 ∈ DivRing ) ) | |
| 2 | riccrng | ⊢ ( 𝑅 ≃𝑟 𝑆 → ( 𝑅 ∈ CRing ↔ 𝑆 ∈ CRing ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝑅 ≃𝑟 𝑆 → ( ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ↔ ( 𝑆 ∈ DivRing ∧ 𝑆 ∈ CRing ) ) ) |
| 4 | isfld | ⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) | |
| 5 | isfld | ⊢ ( 𝑆 ∈ Field ↔ ( 𝑆 ∈ DivRing ∧ 𝑆 ∈ CRing ) ) | |
| 6 | 3 4 5 | 3bitr4g | ⊢ ( 𝑅 ≃𝑟 𝑆 → ( 𝑅 ∈ Field ↔ 𝑆 ∈ Field ) ) |