Metamath Proof Explorer


Theorem asclf1

Description: Two ways of saying the scalar injection is one-to-one. (Contributed by SN, 3-Jul-2025)

Ref Expression
Hypotheses asclf1.a 𝐴 = ( algSc ‘ 𝑊 )
asclf1.b 𝐵 = ( Base ‘ 𝑊 )
asclf1.s 𝑆 = ( Scalar ‘ 𝑊 )
asclf1.k 𝐾 = ( Base ‘ 𝑆 )
asclf1.0 0 = ( 0g𝑊 )
asclf1.n 𝑁 = ( 0g𝑆 )
asclf1.r ( 𝜑𝑊 ∈ Ring )
asclf1.m ( 𝜑𝑊 ∈ LMod )
Assertion asclf1 ( 𝜑 → ( 𝐴 : 𝐾1-1𝐵 ↔ ∀ 𝑠𝐾 ( ( 𝐴𝑠 ) = 0𝑠 = 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 asclf1.a 𝐴 = ( algSc ‘ 𝑊 )
2 asclf1.b 𝐵 = ( Base ‘ 𝑊 )
3 asclf1.s 𝑆 = ( Scalar ‘ 𝑊 )
4 asclf1.k 𝐾 = ( Base ‘ 𝑆 )
5 asclf1.0 0 = ( 0g𝑊 )
6 asclf1.n 𝑁 = ( 0g𝑆 )
7 asclf1.r ( 𝜑𝑊 ∈ Ring )
8 asclf1.m ( 𝜑𝑊 ∈ LMod )
9 1 3 7 8 asclghm ( 𝜑𝐴 ∈ ( 𝑆 GrpHom 𝑊 ) )
10 4 2 6 5 ghmf1 ( 𝐴 ∈ ( 𝑆 GrpHom 𝑊 ) → ( 𝐴 : 𝐾1-1𝐵 ↔ ∀ 𝑠𝐾 ( ( 𝐴𝑠 ) = 0𝑠 = 𝑁 ) ) )
11 9 10 syl ( 𝜑 → ( 𝐴 : 𝐾1-1𝐵 ↔ ∀ 𝑠𝐾 ( ( 𝐴𝑠 ) = 0𝑠 = 𝑁 ) ) )