Step |
Hyp |
Ref |
Expression |
1 |
|
abvexp.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
abvexp.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
3 |
|
abvexp.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
abvexp.r |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
5 |
|
abvexp.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
6 |
|
abvexp.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
abvexp.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
8 |
|
fvoveq1 |
⊢ ( 𝑥 = 0 → ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( 𝐹 ‘ ( 0 ↑ 𝑋 ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 0 ) ) |
10 |
8 9
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) ↔ ( 𝐹 ‘ ( 0 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 0 ) ) ) |
11 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) |
13 |
11 12
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) ) |
14 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( 𝐹 ‘ ( ( 𝑦 + 1 ) ↑ 𝑋 ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) = ( ( 𝐹 ‘ 𝑋 ) ↑ ( 𝑦 + 1 ) ) ) |
16 |
14 15
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) ↔ ( 𝐹 ‘ ( ( 𝑦 + 1 ) ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ ( 𝑦 + 1 ) ) ) ) |
17 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑁 ) ) |
19 |
17 18
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑁 ) ) ) |
20 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
22 |
20 21
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
24 |
1 20 21
|
abv1z |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
25 |
5 23 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
26 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
27 |
26 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
28 |
26 20
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
29 |
27 28 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
30 |
6 29
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
31 |
30
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0 ↑ 𝑋 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
32 |
1 3
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
33 |
5 6 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
34 |
33
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
35 |
34
|
exp0d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ↑ 0 ) = 1 ) |
36 |
25 31 35
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 0 ) ) |
37 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → 𝐹 ∈ 𝐴 ) |
38 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
39 |
26
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
40 |
4 38 39
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
42 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → 𝑦 ∈ ℕ0 ) |
43 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → 𝑋 ∈ 𝐵 ) |
44 |
27 2 41 42 43
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝑦 ↑ 𝑋 ) ∈ 𝐵 ) |
45 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
46 |
1 3 45
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑦 ↑ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) · ( 𝐹 ‘ 𝑋 ) ) ) |
47 |
37 44 43 46
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) · ( 𝐹 ‘ 𝑋 ) ) ) |
48 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) |
49 |
48
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) · ( 𝐹 ‘ 𝑋 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) · ( 𝐹 ‘ 𝑋 ) ) ) |
50 |
47 49
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) · ( 𝐹 ‘ 𝑋 ) ) ) |
51 |
26 45
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
52 |
27 2 51
|
mulgnn0p1 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) ↑ 𝑋 ) = ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
53 |
41 42 43 52
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( ( 𝑦 + 1 ) ↑ 𝑋 ) = ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
54 |
53
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ ( ( 𝑦 + 1 ) ↑ 𝑋 ) ) = ( 𝐹 ‘ ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
55 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
56 |
55 42
|
expp1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑋 ) ↑ ( 𝑦 + 1 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) · ( 𝐹 ‘ 𝑋 ) ) ) |
57 |
50 54 56
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ ( ( 𝑦 + 1 ) ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ ( 𝑦 + 1 ) ) ) |
58 |
10 13 16 19 36 57
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑁 ) ) |
59 |
7 58
|
mpdan |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑁 ) ) |