| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvexp.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
| 2 |
|
abvexp.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 3 |
|
abvexp.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
abvexp.r |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
| 5 |
|
abvexp.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
| 6 |
|
abvexp.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
|
abvexp.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 8 |
|
fvoveq1 |
⊢ ( 𝑥 = 0 → ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( 𝐹 ‘ ( 0 ↑ 𝑋 ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 0 ) ) |
| 10 |
8 9
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) ↔ ( 𝐹 ‘ ( 0 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 0 ) ) ) |
| 11 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) |
| 13 |
11 12
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) ) |
| 14 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( 𝐹 ‘ ( ( 𝑦 + 1 ) ↑ 𝑋 ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) = ( ( 𝐹 ‘ 𝑋 ) ↑ ( 𝑦 + 1 ) ) ) |
| 16 |
14 15
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) ↔ ( 𝐹 ‘ ( ( 𝑦 + 1 ) ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ ( 𝑦 + 1 ) ) ) ) |
| 17 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑁 ) ) |
| 19 |
17 18
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ ( 𝑥 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑁 ) ) ) |
| 20 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 22 |
20 21
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 23 |
4 22
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 24 |
1 20 21
|
abv1z |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 25 |
5 23 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 26 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 27 |
26 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 28 |
26 20
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 29 |
27 28 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 30 |
6 29
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 31 |
30
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0 ↑ 𝑋 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 32 |
1 3
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 33 |
5 6 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 34 |
33
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
| 35 |
34
|
exp0d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ↑ 0 ) = 1 ) |
| 36 |
25 31 35
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 0 ) ) |
| 37 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → 𝐹 ∈ 𝐴 ) |
| 38 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 39 |
26
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 40 |
4 38 39
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 42 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → 𝑦 ∈ ℕ0 ) |
| 43 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → 𝑋 ∈ 𝐵 ) |
| 44 |
27 2 41 42 43
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝑦 ↑ 𝑋 ) ∈ 𝐵 ) |
| 45 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 46 |
1 3 45
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑦 ↑ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) · ( 𝐹 ‘ 𝑋 ) ) ) |
| 47 |
37 44 43 46
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) · ( 𝐹 ‘ 𝑋 ) ) ) |
| 48 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) |
| 49 |
48
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) · ( 𝐹 ‘ 𝑋 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) · ( 𝐹 ‘ 𝑋 ) ) ) |
| 50 |
47 49
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) · ( 𝐹 ‘ 𝑋 ) ) ) |
| 51 |
26 45
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 52 |
27 2 51
|
mulgnn0p1 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) ↑ 𝑋 ) = ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 53 |
41 42 43 52
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( ( 𝑦 + 1 ) ↑ 𝑋 ) = ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 54 |
53
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ ( ( 𝑦 + 1 ) ↑ 𝑋 ) ) = ( 𝐹 ‘ ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
| 55 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
| 56 |
55 42
|
expp1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑋 ) ↑ ( 𝑦 + 1 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) · ( 𝐹 ‘ 𝑋 ) ) ) |
| 57 |
50 54 56
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑦 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑦 ) ) → ( 𝐹 ‘ ( ( 𝑦 + 1 ) ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ ( 𝑦 + 1 ) ) ) |
| 58 |
10 13 16 19 36 57
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑁 ) ) |
| 59 |
7 58
|
mpdan |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ↑ 𝑁 ) ) |