Step |
Hyp |
Ref |
Expression |
1 |
|
fimgmcyclem.s |
⊢ ( 𝜑 → ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 ≠ 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) |
2 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) → ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) |
3 |
|
rexcom |
⊢ ( ∃ 𝑟 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑝 < 𝑟 ∧ ( 𝑟 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ↔ ∃ 𝑝 ∈ ℕ ∃ 𝑟 ∈ ℕ ( 𝑝 < 𝑟 ∧ ( 𝑟 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ) |
4 |
|
eqcom |
⊢ ( ( 𝑟 · 𝐴 ) = ( 𝑝 · 𝐴 ) ↔ ( 𝑝 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) |
5 |
4
|
anbi2i |
⊢ ( ( 𝑝 < 𝑟 ∧ ( 𝑟 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ↔ ( 𝑝 < 𝑟 ∧ ( 𝑝 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) |
6 |
5
|
2rexbii |
⊢ ( ∃ 𝑝 ∈ ℕ ∃ 𝑟 ∈ ℕ ( 𝑝 < 𝑟 ∧ ( 𝑟 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ↔ ∃ 𝑝 ∈ ℕ ∃ 𝑟 ∈ ℕ ( 𝑝 < 𝑟 ∧ ( 𝑝 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) |
7 |
3 6
|
sylbb |
⊢ ( ∃ 𝑟 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑝 < 𝑟 ∧ ( 𝑟 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) → ∃ 𝑝 ∈ ℕ ∃ 𝑟 ∈ ℕ ( 𝑝 < 𝑟 ∧ ( 𝑝 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) |
8 |
|
breq2 |
⊢ ( 𝑜 = 𝑟 → ( 𝑝 < 𝑜 ↔ 𝑝 < 𝑟 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑜 = 𝑟 → ( 𝑜 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑜 = 𝑟 → ( ( 𝑜 · 𝐴 ) = ( 𝑝 · 𝐴 ) ↔ ( 𝑟 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑜 = 𝑟 → ( ( 𝑝 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ↔ ( 𝑝 < 𝑟 ∧ ( 𝑟 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑜 = 𝑟 → ( ∃ 𝑝 ∈ ℕ ( 𝑝 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ↔ ∃ 𝑝 ∈ ℕ ( 𝑝 < 𝑟 ∧ ( 𝑟 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ) ) |
13 |
12
|
cbvrexvw |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑝 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ↔ ∃ 𝑟 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑝 < 𝑟 ∧ ( 𝑟 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ) |
14 |
|
breq1 |
⊢ ( 𝑜 = 𝑝 → ( 𝑜 < 𝑟 ↔ 𝑝 < 𝑟 ) ) |
15 |
|
oveq1 |
⊢ ( 𝑜 = 𝑝 → ( 𝑜 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑜 = 𝑝 → ( ( 𝑜 · 𝐴 ) = ( 𝑟 · 𝐴 ) ↔ ( 𝑝 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) |
17 |
14 16
|
anbi12d |
⊢ ( 𝑜 = 𝑝 → ( ( 𝑜 < 𝑟 ∧ ( 𝑜 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ↔ ( 𝑝 < 𝑟 ∧ ( 𝑝 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝑜 = 𝑝 → ( ∃ 𝑟 ∈ ℕ ( 𝑜 < 𝑟 ∧ ( 𝑜 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ↔ ∃ 𝑟 ∈ ℕ ( 𝑝 < 𝑟 ∧ ( 𝑝 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) ) |
19 |
18
|
cbvrexvw |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑟 ∈ ℕ ( 𝑜 < 𝑟 ∧ ( 𝑜 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ↔ ∃ 𝑝 ∈ ℕ ∃ 𝑟 ∈ ℕ ( 𝑝 < 𝑟 ∧ ( 𝑝 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) |
20 |
7 13 19
|
3imtr4i |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑝 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) → ∃ 𝑜 ∈ ℕ ∃ 𝑟 ∈ ℕ ( 𝑜 < 𝑟 ∧ ( 𝑜 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) |
21 |
|
breq1 |
⊢ ( 𝑞 = 𝑝 → ( 𝑞 < 𝑜 ↔ 𝑝 < 𝑜 ) ) |
22 |
|
oveq1 |
⊢ ( 𝑞 = 𝑝 → ( 𝑞 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑞 = 𝑝 → ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ↔ ( 𝑜 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ) |
24 |
21 23
|
anbi12d |
⊢ ( 𝑞 = 𝑝 → ( ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ( 𝑝 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ) ) |
25 |
24
|
cbvrexvw |
⊢ ( ∃ 𝑞 ∈ ℕ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ∃ 𝑝 ∈ ℕ ( 𝑝 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ) |
26 |
25
|
rexbii |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ∃ 𝑜 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑝 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑝 · 𝐴 ) ) ) |
27 |
|
breq2 |
⊢ ( 𝑞 = 𝑟 → ( 𝑜 < 𝑞 ↔ 𝑜 < 𝑟 ) ) |
28 |
|
oveq1 |
⊢ ( 𝑞 = 𝑟 → ( 𝑞 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑞 = 𝑟 → ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ↔ ( 𝑜 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) |
30 |
27 29
|
anbi12d |
⊢ ( 𝑞 = 𝑟 → ( ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ( 𝑜 < 𝑟 ∧ ( 𝑜 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) ) |
31 |
30
|
cbvrexvw |
⊢ ( ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ∃ 𝑟 ∈ ℕ ( 𝑜 < 𝑟 ∧ ( 𝑜 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) |
32 |
31
|
rexbii |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ∃ 𝑜 ∈ ℕ ∃ 𝑟 ∈ ℕ ( 𝑜 < 𝑟 ∧ ( 𝑜 · 𝐴 ) = ( 𝑟 · 𝐴 ) ) ) |
33 |
20 26 32
|
3imtr4i |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) → ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) → ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) |
35 |
|
simpl |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → 𝑜 ∈ ℕ ) |
36 |
35
|
nnred |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → 𝑜 ∈ ℝ ) |
37 |
|
simpr |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → 𝑞 ∈ ℕ ) |
38 |
37
|
nnred |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → 𝑞 ∈ ℝ ) |
39 |
36 38
|
lttri2d |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( 𝑜 ≠ 𝑞 ↔ ( 𝑜 < 𝑞 ∨ 𝑞 < 𝑜 ) ) ) |
40 |
39
|
anbi1d |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( ( 𝑜 ≠ 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ( ( 𝑜 < 𝑞 ∨ 𝑞 < 𝑜 ) ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
41 |
|
andir |
⊢ ( ( ( 𝑜 < 𝑞 ∨ 𝑞 < 𝑜 ) ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ( ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ∨ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
42 |
40 41
|
bitrdi |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( ( 𝑜 ≠ 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ( ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ∨ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) ) |
43 |
42
|
2rexbiia |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 ≠ 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ∨ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
44 |
|
r19.43 |
⊢ ( ∃ 𝑞 ∈ ℕ ( ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ∨ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ↔ ( ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ∨ ∃ 𝑞 ∈ ℕ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
45 |
44
|
rexbii |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ∨ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ↔ ∃ 𝑜 ∈ ℕ ( ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ∨ ∃ 𝑞 ∈ ℕ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
46 |
|
r19.43 |
⊢ ( ∃ 𝑜 ∈ ℕ ( ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ∨ ∃ 𝑞 ∈ ℕ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ↔ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ∨ ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
47 |
43 45 46
|
3bitri |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 ≠ 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ∨ ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
48 |
1 47
|
sylib |
⊢ ( 𝜑 → ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ∨ ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑞 < 𝑜 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
49 |
2 34 48
|
mpjaodan |
⊢ ( 𝜑 → ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) |