| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fimgmcyclem.s |
|
| 2 |
|
simpr |
|
| 3 |
|
rexcom |
|
| 4 |
|
eqcom |
|
| 5 |
4
|
anbi2i |
|
| 6 |
5
|
2rexbii |
|
| 7 |
3 6
|
sylbb |
|
| 8 |
|
breq2 |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
eqeq1d |
|
| 11 |
8 10
|
anbi12d |
|
| 12 |
11
|
rexbidv |
|
| 13 |
12
|
cbvrexvw |
|
| 14 |
|
breq1 |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
14 16
|
anbi12d |
|
| 18 |
17
|
rexbidv |
|
| 19 |
18
|
cbvrexvw |
|
| 20 |
7 13 19
|
3imtr4i |
|
| 21 |
|
breq1 |
|
| 22 |
|
oveq1 |
|
| 23 |
22
|
eqeq2d |
|
| 24 |
21 23
|
anbi12d |
|
| 25 |
24
|
cbvrexvw |
|
| 26 |
25
|
rexbii |
|
| 27 |
|
breq2 |
|
| 28 |
|
oveq1 |
|
| 29 |
28
|
eqeq2d |
|
| 30 |
27 29
|
anbi12d |
|
| 31 |
30
|
cbvrexvw |
|
| 32 |
31
|
rexbii |
|
| 33 |
20 26 32
|
3imtr4i |
|
| 34 |
33
|
adantl |
|
| 35 |
|
simpl |
|
| 36 |
35
|
nnred |
|
| 37 |
|
simpr |
|
| 38 |
37
|
nnred |
|
| 39 |
36 38
|
lttri2d |
|
| 40 |
39
|
anbi1d |
|
| 41 |
|
andir |
|
| 42 |
40 41
|
bitrdi |
|
| 43 |
42
|
2rexbiia |
|
| 44 |
|
r19.43 |
|
| 45 |
44
|
rexbii |
|
| 46 |
|
r19.43 |
|
| 47 |
43 45 46
|
3bitri |
|
| 48 |
1 47
|
sylib |
|
| 49 |
2 34 48
|
mpjaodan |
|