Step |
Hyp |
Ref |
Expression |
1 |
|
fimgmcyclem.s |
|
2 |
|
simpr |
|
3 |
|
rexcom |
|
4 |
|
eqcom |
|
5 |
4
|
anbi2i |
|
6 |
5
|
2rexbii |
|
7 |
3 6
|
sylbb |
|
8 |
|
breq2 |
|
9 |
|
oveq1 |
|
10 |
9
|
eqeq1d |
|
11 |
8 10
|
anbi12d |
|
12 |
11
|
rexbidv |
|
13 |
12
|
cbvrexvw |
|
14 |
|
breq1 |
|
15 |
|
oveq1 |
|
16 |
15
|
eqeq1d |
|
17 |
14 16
|
anbi12d |
|
18 |
17
|
rexbidv |
|
19 |
18
|
cbvrexvw |
|
20 |
7 13 19
|
3imtr4i |
|
21 |
|
breq1 |
|
22 |
|
oveq1 |
|
23 |
22
|
eqeq2d |
|
24 |
21 23
|
anbi12d |
|
25 |
24
|
cbvrexvw |
|
26 |
25
|
rexbii |
|
27 |
|
breq2 |
|
28 |
|
oveq1 |
|
29 |
28
|
eqeq2d |
|
30 |
27 29
|
anbi12d |
|
31 |
30
|
cbvrexvw |
|
32 |
31
|
rexbii |
|
33 |
20 26 32
|
3imtr4i |
|
34 |
33
|
adantl |
|
35 |
|
simpl |
|
36 |
35
|
nnred |
|
37 |
|
simpr |
|
38 |
37
|
nnred |
|
39 |
36 38
|
lttri2d |
|
40 |
39
|
anbi1d |
|
41 |
|
andir |
|
42 |
40 41
|
bitrdi |
|
43 |
42
|
2rexbiia |
|
44 |
|
r19.43 |
|
45 |
44
|
rexbii |
|
46 |
|
r19.43 |
|
47 |
43 45 46
|
3bitri |
|
48 |
1 47
|
sylib |
|
49 |
2 34 48
|
mpjaodan |
|