Step |
Hyp |
Ref |
Expression |
1 |
|
fimgmcyclem.s |
|- ( ph -> E. o e. NN E. q e. NN ( o =/= q /\ ( o .x. A ) = ( q .x. A ) ) ) |
2 |
|
simpr |
|- ( ( ph /\ E. o e. NN E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) ) -> E. o e. NN E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) ) |
3 |
|
rexcom |
|- ( E. r e. NN E. p e. NN ( p < r /\ ( r .x. A ) = ( p .x. A ) ) <-> E. p e. NN E. r e. NN ( p < r /\ ( r .x. A ) = ( p .x. A ) ) ) |
4 |
|
eqcom |
|- ( ( r .x. A ) = ( p .x. A ) <-> ( p .x. A ) = ( r .x. A ) ) |
5 |
4
|
anbi2i |
|- ( ( p < r /\ ( r .x. A ) = ( p .x. A ) ) <-> ( p < r /\ ( p .x. A ) = ( r .x. A ) ) ) |
6 |
5
|
2rexbii |
|- ( E. p e. NN E. r e. NN ( p < r /\ ( r .x. A ) = ( p .x. A ) ) <-> E. p e. NN E. r e. NN ( p < r /\ ( p .x. A ) = ( r .x. A ) ) ) |
7 |
3 6
|
sylbb |
|- ( E. r e. NN E. p e. NN ( p < r /\ ( r .x. A ) = ( p .x. A ) ) -> E. p e. NN E. r e. NN ( p < r /\ ( p .x. A ) = ( r .x. A ) ) ) |
8 |
|
breq2 |
|- ( o = r -> ( p < o <-> p < r ) ) |
9 |
|
oveq1 |
|- ( o = r -> ( o .x. A ) = ( r .x. A ) ) |
10 |
9
|
eqeq1d |
|- ( o = r -> ( ( o .x. A ) = ( p .x. A ) <-> ( r .x. A ) = ( p .x. A ) ) ) |
11 |
8 10
|
anbi12d |
|- ( o = r -> ( ( p < o /\ ( o .x. A ) = ( p .x. A ) ) <-> ( p < r /\ ( r .x. A ) = ( p .x. A ) ) ) ) |
12 |
11
|
rexbidv |
|- ( o = r -> ( E. p e. NN ( p < o /\ ( o .x. A ) = ( p .x. A ) ) <-> E. p e. NN ( p < r /\ ( r .x. A ) = ( p .x. A ) ) ) ) |
13 |
12
|
cbvrexvw |
|- ( E. o e. NN E. p e. NN ( p < o /\ ( o .x. A ) = ( p .x. A ) ) <-> E. r e. NN E. p e. NN ( p < r /\ ( r .x. A ) = ( p .x. A ) ) ) |
14 |
|
breq1 |
|- ( o = p -> ( o < r <-> p < r ) ) |
15 |
|
oveq1 |
|- ( o = p -> ( o .x. A ) = ( p .x. A ) ) |
16 |
15
|
eqeq1d |
|- ( o = p -> ( ( o .x. A ) = ( r .x. A ) <-> ( p .x. A ) = ( r .x. A ) ) ) |
17 |
14 16
|
anbi12d |
|- ( o = p -> ( ( o < r /\ ( o .x. A ) = ( r .x. A ) ) <-> ( p < r /\ ( p .x. A ) = ( r .x. A ) ) ) ) |
18 |
17
|
rexbidv |
|- ( o = p -> ( E. r e. NN ( o < r /\ ( o .x. A ) = ( r .x. A ) ) <-> E. r e. NN ( p < r /\ ( p .x. A ) = ( r .x. A ) ) ) ) |
19 |
18
|
cbvrexvw |
|- ( E. o e. NN E. r e. NN ( o < r /\ ( o .x. A ) = ( r .x. A ) ) <-> E. p e. NN E. r e. NN ( p < r /\ ( p .x. A ) = ( r .x. A ) ) ) |
20 |
7 13 19
|
3imtr4i |
|- ( E. o e. NN E. p e. NN ( p < o /\ ( o .x. A ) = ( p .x. A ) ) -> E. o e. NN E. r e. NN ( o < r /\ ( o .x. A ) = ( r .x. A ) ) ) |
21 |
|
breq1 |
|- ( q = p -> ( q < o <-> p < o ) ) |
22 |
|
oveq1 |
|- ( q = p -> ( q .x. A ) = ( p .x. A ) ) |
23 |
22
|
eqeq2d |
|- ( q = p -> ( ( o .x. A ) = ( q .x. A ) <-> ( o .x. A ) = ( p .x. A ) ) ) |
24 |
21 23
|
anbi12d |
|- ( q = p -> ( ( q < o /\ ( o .x. A ) = ( q .x. A ) ) <-> ( p < o /\ ( o .x. A ) = ( p .x. A ) ) ) ) |
25 |
24
|
cbvrexvw |
|- ( E. q e. NN ( q < o /\ ( o .x. A ) = ( q .x. A ) ) <-> E. p e. NN ( p < o /\ ( o .x. A ) = ( p .x. A ) ) ) |
26 |
25
|
rexbii |
|- ( E. o e. NN E. q e. NN ( q < o /\ ( o .x. A ) = ( q .x. A ) ) <-> E. o e. NN E. p e. NN ( p < o /\ ( o .x. A ) = ( p .x. A ) ) ) |
27 |
|
breq2 |
|- ( q = r -> ( o < q <-> o < r ) ) |
28 |
|
oveq1 |
|- ( q = r -> ( q .x. A ) = ( r .x. A ) ) |
29 |
28
|
eqeq2d |
|- ( q = r -> ( ( o .x. A ) = ( q .x. A ) <-> ( o .x. A ) = ( r .x. A ) ) ) |
30 |
27 29
|
anbi12d |
|- ( q = r -> ( ( o < q /\ ( o .x. A ) = ( q .x. A ) ) <-> ( o < r /\ ( o .x. A ) = ( r .x. A ) ) ) ) |
31 |
30
|
cbvrexvw |
|- ( E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) <-> E. r e. NN ( o < r /\ ( o .x. A ) = ( r .x. A ) ) ) |
32 |
31
|
rexbii |
|- ( E. o e. NN E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) <-> E. o e. NN E. r e. NN ( o < r /\ ( o .x. A ) = ( r .x. A ) ) ) |
33 |
20 26 32
|
3imtr4i |
|- ( E. o e. NN E. q e. NN ( q < o /\ ( o .x. A ) = ( q .x. A ) ) -> E. o e. NN E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) ) |
34 |
33
|
adantl |
|- ( ( ph /\ E. o e. NN E. q e. NN ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) -> E. o e. NN E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) ) |
35 |
|
simpl |
|- ( ( o e. NN /\ q e. NN ) -> o e. NN ) |
36 |
35
|
nnred |
|- ( ( o e. NN /\ q e. NN ) -> o e. RR ) |
37 |
|
simpr |
|- ( ( o e. NN /\ q e. NN ) -> q e. NN ) |
38 |
37
|
nnred |
|- ( ( o e. NN /\ q e. NN ) -> q e. RR ) |
39 |
36 38
|
lttri2d |
|- ( ( o e. NN /\ q e. NN ) -> ( o =/= q <-> ( o < q \/ q < o ) ) ) |
40 |
39
|
anbi1d |
|- ( ( o e. NN /\ q e. NN ) -> ( ( o =/= q /\ ( o .x. A ) = ( q .x. A ) ) <-> ( ( o < q \/ q < o ) /\ ( o .x. A ) = ( q .x. A ) ) ) ) |
41 |
|
andir |
|- ( ( ( o < q \/ q < o ) /\ ( o .x. A ) = ( q .x. A ) ) <-> ( ( o < q /\ ( o .x. A ) = ( q .x. A ) ) \/ ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) ) |
42 |
40 41
|
bitrdi |
|- ( ( o e. NN /\ q e. NN ) -> ( ( o =/= q /\ ( o .x. A ) = ( q .x. A ) ) <-> ( ( o < q /\ ( o .x. A ) = ( q .x. A ) ) \/ ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) ) ) |
43 |
42
|
2rexbiia |
|- ( E. o e. NN E. q e. NN ( o =/= q /\ ( o .x. A ) = ( q .x. A ) ) <-> E. o e. NN E. q e. NN ( ( o < q /\ ( o .x. A ) = ( q .x. A ) ) \/ ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) ) |
44 |
|
r19.43 |
|- ( E. q e. NN ( ( o < q /\ ( o .x. A ) = ( q .x. A ) ) \/ ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) <-> ( E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) \/ E. q e. NN ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) ) |
45 |
44
|
rexbii |
|- ( E. o e. NN E. q e. NN ( ( o < q /\ ( o .x. A ) = ( q .x. A ) ) \/ ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) <-> E. o e. NN ( E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) \/ E. q e. NN ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) ) |
46 |
|
r19.43 |
|- ( E. o e. NN ( E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) \/ E. q e. NN ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) <-> ( E. o e. NN E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) \/ E. o e. NN E. q e. NN ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) ) |
47 |
43 45 46
|
3bitri |
|- ( E. o e. NN E. q e. NN ( o =/= q /\ ( o .x. A ) = ( q .x. A ) ) <-> ( E. o e. NN E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) \/ E. o e. NN E. q e. NN ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) ) |
48 |
1 47
|
sylib |
|- ( ph -> ( E. o e. NN E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) \/ E. o e. NN E. q e. NN ( q < o /\ ( o .x. A ) = ( q .x. A ) ) ) ) |
49 |
2 34 48
|
mpjaodan |
|- ( ph -> E. o e. NN E. q e. NN ( o < q /\ ( o .x. A ) = ( q .x. A ) ) ) |