Step |
Hyp |
Ref |
Expression |
1 |
|
fimgmcyc.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
fimgmcyc.m |
⊢ · = ( .g ‘ 𝑀 ) |
3 |
|
fimgmcyc.s |
⊢ ( 𝜑 → 𝑀 ∈ Mgm ) |
4 |
|
fimgmcyc.f |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
5 |
|
fimgmcyc.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
6 |
|
domnsym |
⊢ ( ℕ ≼ 𝐵 → ¬ 𝐵 ≺ ℕ ) |
7 |
|
fisdomnn |
⊢ ( 𝐵 ∈ Fin → 𝐵 ≺ ℕ ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → 𝐵 ≺ ℕ ) |
9 |
6 8
|
nsyl3 |
⊢ ( 𝜑 → ¬ ℕ ≼ 𝐵 ) |
10 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
11 |
10
|
f1dom |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) : ℕ –1-1→ 𝐵 → ℕ ≼ 𝐵 ) |
12 |
9 11
|
nsyl |
⊢ ( 𝜑 → ¬ ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) : ℕ –1-1→ 𝐵 ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ Mgm ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ 𝐵 ) |
16 |
1 2
|
mulgnncl |
⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑛 ∈ ℕ ∧ 𝐴 ∈ 𝐵 ) → ( 𝑛 · 𝐴 ) ∈ 𝐵 ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · 𝐴 ) ∈ 𝐵 ) |
18 |
17
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) : ℕ ⟶ 𝐵 ) |
19 |
|
dff13 |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) : ℕ –1-1→ 𝐵 ↔ ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) : ℕ ⟶ 𝐵 ∧ ∀ 𝑜 ∈ ℕ ∀ 𝑞 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑜 ) = ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑞 ) → 𝑜 = 𝑞 ) ) ) |
20 |
19
|
baib |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) : ℕ ⟶ 𝐵 → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) : ℕ –1-1→ 𝐵 ↔ ∀ 𝑜 ∈ ℕ ∀ 𝑞 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑜 ) = ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑞 ) → 𝑜 = 𝑞 ) ) ) |
21 |
18 20
|
syl |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) : ℕ –1-1→ 𝐵 ↔ ∀ 𝑜 ∈ ℕ ∀ 𝑞 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑜 ) = ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑞 ) → 𝑜 = 𝑞 ) ) ) |
22 |
12 21
|
mtbid |
⊢ ( 𝜑 → ¬ ∀ 𝑜 ∈ ℕ ∀ 𝑞 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑜 ) = ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑞 ) → 𝑜 = 𝑞 ) ) |
23 |
|
oveq1 |
⊢ ( 𝑛 = 𝑜 → ( 𝑛 · 𝐴 ) = ( 𝑜 · 𝐴 ) ) |
24 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) |
25 |
|
ovex |
⊢ ( 𝑜 · 𝐴 ) ∈ V |
26 |
23 24 25
|
fvmpt |
⊢ ( 𝑜 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑜 ) = ( 𝑜 · 𝐴 ) ) |
27 |
|
oveq1 |
⊢ ( 𝑛 = 𝑞 → ( 𝑛 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) |
28 |
|
ovex |
⊢ ( 𝑞 · 𝐴 ) ∈ V |
29 |
27 24 28
|
fvmpt |
⊢ ( 𝑞 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑞 ) = ( 𝑞 · 𝐴 ) ) |
30 |
26 29
|
eqeqan12d |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑜 ) = ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑞 ) ↔ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) |
31 |
30
|
imbi1d |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑜 ) = ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑞 ) → 𝑜 = 𝑞 ) ↔ ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) → 𝑜 = 𝑞 ) ) ) |
32 |
31
|
ralbidva |
⊢ ( 𝑜 ∈ ℕ → ( ∀ 𝑞 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑜 ) = ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑞 ) → 𝑜 = 𝑞 ) ↔ ∀ 𝑞 ∈ ℕ ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) → 𝑜 = 𝑞 ) ) ) |
33 |
32
|
ralbiia |
⊢ ( ∀ 𝑜 ∈ ℕ ∀ 𝑞 ∈ ℕ ( ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑜 ) = ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 · 𝐴 ) ) ‘ 𝑞 ) → 𝑜 = 𝑞 ) ↔ ∀ 𝑜 ∈ ℕ ∀ 𝑞 ∈ ℕ ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) → 𝑜 = 𝑞 ) ) |
34 |
22 33
|
sylnib |
⊢ ( 𝜑 → ¬ ∀ 𝑜 ∈ ℕ ∀ 𝑞 ∈ ℕ ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) → 𝑜 = 𝑞 ) ) |
35 |
|
df-ne |
⊢ ( 𝑜 ≠ 𝑞 ↔ ¬ 𝑜 = 𝑞 ) |
36 |
35
|
anbi1i |
⊢ ( ( 𝑜 ≠ 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ( ¬ 𝑜 = 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) |
37 |
|
ancom |
⊢ ( ( ¬ 𝑜 = 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ∧ ¬ 𝑜 = 𝑞 ) ) |
38 |
|
annim |
⊢ ( ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ∧ ¬ 𝑜 = 𝑞 ) ↔ ¬ ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) → 𝑜 = 𝑞 ) ) |
39 |
36 37 38
|
3bitri |
⊢ ( ( 𝑜 ≠ 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ¬ ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) → 𝑜 = 𝑞 ) ) |
40 |
39
|
2rexbii |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 ≠ 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ¬ ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) → 𝑜 = 𝑞 ) ) |
41 |
|
rexnal2 |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ¬ ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) → 𝑜 = 𝑞 ) ↔ ¬ ∀ 𝑜 ∈ ℕ ∀ 𝑞 ∈ ℕ ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) → 𝑜 = 𝑞 ) ) |
42 |
40 41
|
bitri |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 ≠ 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ¬ ∀ 𝑜 ∈ ℕ ∀ 𝑞 ∈ ℕ ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) → 𝑜 = 𝑞 ) ) |
43 |
34 42
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 ≠ 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) |
44 |
43
|
fimgmcyclem |
⊢ ( 𝜑 → ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) |
45 |
|
nnz |
⊢ ( 𝑜 ∈ ℕ → 𝑜 ∈ ℤ ) |
46 |
|
eluzp1 |
⊢ ( 𝑜 ∈ ℤ → ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ↔ ( 𝑞 ∈ ℤ ∧ 𝑜 < 𝑞 ) ) ) |
47 |
45 46
|
syl |
⊢ ( 𝑜 ∈ ℕ → ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ↔ ( 𝑞 ∈ ℤ ∧ 𝑜 < 𝑞 ) ) ) |
48 |
|
idd |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑜 < 𝑞 ) → ( 𝑞 ∈ ℤ → 𝑞 ∈ ℤ ) ) |
49 |
|
nnz |
⊢ ( 𝑞 ∈ ℕ → 𝑞 ∈ ℤ ) |
50 |
49
|
a1i |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑜 < 𝑞 ) → ( 𝑞 ∈ ℕ → 𝑞 ∈ ℤ ) ) |
51 |
|
0red |
⊢ ( ( ( 𝑜 ∈ ℕ ∧ 𝑜 < 𝑞 ) ∧ 𝑞 ∈ ℤ ) → 0 ∈ ℝ ) |
52 |
|
nnre |
⊢ ( 𝑜 ∈ ℕ → 𝑜 ∈ ℝ ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝑜 ∈ ℕ ∧ 𝑜 < 𝑞 ) ∧ 𝑞 ∈ ℤ ) → 𝑜 ∈ ℝ ) |
54 |
|
zre |
⊢ ( 𝑞 ∈ ℤ → 𝑞 ∈ ℝ ) |
55 |
54
|
adantl |
⊢ ( ( ( 𝑜 ∈ ℕ ∧ 𝑜 < 𝑞 ) ∧ 𝑞 ∈ ℤ ) → 𝑞 ∈ ℝ ) |
56 |
|
nngt0 |
⊢ ( 𝑜 ∈ ℕ → 0 < 𝑜 ) |
57 |
56
|
ad2antrr |
⊢ ( ( ( 𝑜 ∈ ℕ ∧ 𝑜 < 𝑞 ) ∧ 𝑞 ∈ ℤ ) → 0 < 𝑜 ) |
58 |
|
simplr |
⊢ ( ( ( 𝑜 ∈ ℕ ∧ 𝑜 < 𝑞 ) ∧ 𝑞 ∈ ℤ ) → 𝑜 < 𝑞 ) |
59 |
51 53 55 57 58
|
lttrd |
⊢ ( ( ( 𝑜 ∈ ℕ ∧ 𝑜 < 𝑞 ) ∧ 𝑞 ∈ ℤ ) → 0 < 𝑞 ) |
60 |
|
elnnz |
⊢ ( 𝑞 ∈ ℕ ↔ ( 𝑞 ∈ ℤ ∧ 0 < 𝑞 ) ) |
61 |
60
|
rbaibr |
⊢ ( 0 < 𝑞 → ( 𝑞 ∈ ℤ ↔ 𝑞 ∈ ℕ ) ) |
62 |
59 61
|
syl |
⊢ ( ( ( 𝑜 ∈ ℕ ∧ 𝑜 < 𝑞 ) ∧ 𝑞 ∈ ℤ ) → ( 𝑞 ∈ ℤ ↔ 𝑞 ∈ ℕ ) ) |
63 |
62
|
ex |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑜 < 𝑞 ) → ( 𝑞 ∈ ℤ → ( 𝑞 ∈ ℤ ↔ 𝑞 ∈ ℕ ) ) ) |
64 |
48 50 63
|
pm5.21ndd |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑜 < 𝑞 ) → ( 𝑞 ∈ ℤ ↔ 𝑞 ∈ ℕ ) ) |
65 |
64
|
ex |
⊢ ( 𝑜 ∈ ℕ → ( 𝑜 < 𝑞 → ( 𝑞 ∈ ℤ ↔ 𝑞 ∈ ℕ ) ) ) |
66 |
65
|
pm5.32rd |
⊢ ( 𝑜 ∈ ℕ → ( ( 𝑞 ∈ ℤ ∧ 𝑜 < 𝑞 ) ↔ ( 𝑞 ∈ ℕ ∧ 𝑜 < 𝑞 ) ) ) |
67 |
47 66
|
bitrd |
⊢ ( 𝑜 ∈ ℕ → ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ↔ ( 𝑞 ∈ ℕ ∧ 𝑜 < 𝑞 ) ) ) |
68 |
67
|
anbi1d |
⊢ ( 𝑜 ∈ ℕ → ( ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ( ( 𝑞 ∈ ℕ ∧ 𝑜 < 𝑞 ) ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
69 |
|
anass |
⊢ ( ( ( 𝑞 ∈ ℕ ∧ 𝑜 < 𝑞 ) ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ( 𝑞 ∈ ℕ ∧ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
70 |
68 69
|
bitrdi |
⊢ ( 𝑜 ∈ ℕ → ( ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ( 𝑞 ∈ ℕ ∧ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) ) |
71 |
70
|
exbidv |
⊢ ( 𝑜 ∈ ℕ → ( ∃ 𝑞 ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ∃ 𝑞 ( 𝑞 ∈ ℕ ∧ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) ) |
72 |
|
df-rex |
⊢ ( ∃ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ↔ ∃ 𝑞 ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) |
73 |
|
df-rex |
⊢ ( ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ↔ ∃ 𝑞 ( 𝑞 ∈ ℕ ∧ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
74 |
71 72 73
|
3bitr4g |
⊢ ( 𝑜 ∈ ℕ → ( ∃ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ↔ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) ) |
75 |
74
|
rexbiia |
⊢ ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ↔ ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 𝑜 < 𝑞 ∧ ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) ) |
76 |
44 75
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ) |
77 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → 𝑜 ∈ ℕ ) |
78 |
77
|
peano2nnd |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → ( 𝑜 + 1 ) ∈ ℕ ) |
79 |
78
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → ( 𝑜 + 1 ) ∈ ℤ ) |
80 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → 𝑝 ∈ ℕ ) |
81 |
77 80
|
nnaddcld |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → ( 𝑜 + 𝑝 ) ∈ ℕ ) |
82 |
81
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → ( 𝑜 + 𝑝 ) ∈ ℤ ) |
83 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → 1 ∈ ℝ ) |
84 |
80
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → 𝑝 ∈ ℝ ) |
85 |
77
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → 𝑜 ∈ ℝ ) |
86 |
80
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → 1 ≤ 𝑝 ) |
87 |
83 84 85 86
|
leadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → ( 𝑜 + 1 ) ≤ ( 𝑜 + 𝑝 ) ) |
88 |
|
eluz2 |
⊢ ( ( 𝑜 + 𝑝 ) ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ↔ ( ( 𝑜 + 1 ) ∈ ℤ ∧ ( 𝑜 + 𝑝 ) ∈ ℤ ∧ ( 𝑜 + 1 ) ≤ ( 𝑜 + 𝑝 ) ) ) |
89 |
79 82 87 88
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑝 ∈ ℕ ) → ( 𝑜 + 𝑝 ) ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) |
90 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) → 𝑜 ∈ ℕ ) |
91 |
90
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) → 𝑜 ∈ ℤ ) |
92 |
|
eluzp1l |
⊢ ( ( 𝑜 ∈ ℤ ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) → 𝑜 < 𝑞 ) |
93 |
91 92
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) → 𝑜 < 𝑞 ) |
94 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) → 𝑜 ∈ ℕ ) |
95 |
|
peano2nn |
⊢ ( 𝑜 ∈ ℕ → ( 𝑜 + 1 ) ∈ ℕ ) |
96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) → ( 𝑜 + 1 ) ∈ ℕ ) |
97 |
|
eluznn |
⊢ ( ( ( 𝑜 + 1 ) ∈ ℕ ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) → 𝑞 ∈ ℕ ) |
98 |
96 97
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) → 𝑞 ∈ ℕ ) |
99 |
|
nnsub |
⊢ ( ( 𝑜 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( 𝑜 < 𝑞 ↔ ( 𝑞 − 𝑜 ) ∈ ℕ ) ) |
100 |
94 98 99
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) → ( 𝑜 < 𝑞 ↔ ( 𝑞 − 𝑜 ) ∈ ℕ ) ) |
101 |
93 100
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) → ( 𝑞 − 𝑜 ) ∈ ℕ ) |
102 |
|
eluzelcn |
⊢ ( 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) → 𝑞 ∈ ℂ ) |
103 |
102
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) ∧ 𝑝 = ( 𝑞 − 𝑜 ) ) → 𝑞 ∈ ℂ ) |
104 |
|
nncn |
⊢ ( 𝑜 ∈ ℕ → 𝑜 ∈ ℂ ) |
105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) → 𝑜 ∈ ℂ ) |
106 |
105
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) ∧ 𝑝 = ( 𝑞 − 𝑜 ) ) → 𝑜 ∈ ℂ ) |
107 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) ∧ 𝑝 = ( 𝑞 − 𝑜 ) ) → 𝑝 = ( 𝑞 − 𝑜 ) ) |
108 |
103 106 107
|
rsubrotld |
⊢ ( ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) ∧ 𝑝 = ( 𝑞 − 𝑜 ) ) → 𝑞 = ( 𝑜 + 𝑝 ) ) |
109 |
101 108
|
rspcedeq2vd |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ) → ∃ 𝑝 ∈ ℕ 𝑞 = ( 𝑜 + 𝑝 ) ) |
110 |
|
oveq1 |
⊢ ( 𝑞 = ( 𝑜 + 𝑝 ) → ( 𝑞 · 𝐴 ) = ( ( 𝑜 + 𝑝 ) · 𝐴 ) ) |
111 |
110
|
eqeq2d |
⊢ ( 𝑞 = ( 𝑜 + 𝑝 ) → ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ↔ ( 𝑜 · 𝐴 ) = ( ( 𝑜 + 𝑝 ) · 𝐴 ) ) ) |
112 |
111
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) ∧ 𝑞 = ( 𝑜 + 𝑝 ) ) → ( ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ↔ ( 𝑜 · 𝐴 ) = ( ( 𝑜 + 𝑝 ) · 𝐴 ) ) ) |
113 |
89 109 112
|
rexxfrd |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ℕ ) → ( ∃ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ↔ ∃ 𝑝 ∈ ℕ ( 𝑜 · 𝐴 ) = ( ( 𝑜 + 𝑝 ) · 𝐴 ) ) ) |
114 |
113
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑜 ∈ ℕ ∃ 𝑞 ∈ ( ℤ≥ ‘ ( 𝑜 + 1 ) ) ( 𝑜 · 𝐴 ) = ( 𝑞 · 𝐴 ) ↔ ∃ 𝑜 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑜 · 𝐴 ) = ( ( 𝑜 + 𝑝 ) · 𝐴 ) ) ) |
115 |
76 114
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑜 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑜 · 𝐴 ) = ( ( 𝑜 + 𝑝 ) · 𝐴 ) ) |