Metamath Proof Explorer


Theorem fidomncyc

Description: Version of odcl2 for multiplicative groups of finite domains (that is, a finite monoid where nonzero elements are cancellable): one ( .1. ) is a multiple of any nonzero element. (Contributed by SN, 3-Jul-2025)

Ref Expression
Hypotheses fidomncyc.b 𝐵 = ( Base ‘ 𝑅 )
fidomncyc.0 0 = ( 0g𝑅 )
fidomncyc.1 1 = ( 1r𝑅 )
fidomncyc.e = ( .g ‘ ( mulGrp ‘ 𝑅 ) )
fidomncyc.r ( 𝜑𝑅 ∈ Domn )
fidomncyc.f ( 𝜑𝐵 ∈ Fin )
fidomncyc.a ( 𝜑𝐴 ∈ ( 𝐵 ∖ { 0 } ) )
Assertion fidomncyc ( 𝜑 → ∃ 𝑛 ∈ ℕ ( 𝑛 𝐴 ) = 1 )

Proof

Step Hyp Ref Expression
1 fidomncyc.b 𝐵 = ( Base ‘ 𝑅 )
2 fidomncyc.0 0 = ( 0g𝑅 )
3 fidomncyc.1 1 = ( 1r𝑅 )
4 fidomncyc.e = ( .g ‘ ( mulGrp ‘ 𝑅 ) )
5 fidomncyc.r ( 𝜑𝑅 ∈ Domn )
6 fidomncyc.f ( 𝜑𝐵 ∈ Fin )
7 fidomncyc.a ( 𝜑𝐴 ∈ ( 𝐵 ∖ { 0 } ) )
8 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
9 8 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
10 domnring ( 𝑅 ∈ Domn → 𝑅 ∈ Ring )
11 5 10 syl ( 𝜑𝑅 ∈ Ring )
12 8 ringmgp ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
13 11 12 syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
14 mndmgm ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( mulGrp ‘ 𝑅 ) ∈ Mgm )
15 13 14 syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mgm )
16 7 eldifad ( 𝜑𝐴𝐵 )
17 9 4 15 6 16 fimgmcyc ( 𝜑 → ∃ 𝑜 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) )
18 simplrr ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → 𝑝 ∈ ℕ )
19 eqid ( .r𝑅 ) = ( .r𝑅 )
20 5 adantr ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝑅 ∈ Domn )
21 nnnn0 ( 𝑜 ∈ ℕ → 𝑜 ∈ ℕ0 )
22 21 ad2antrl ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝑜 ∈ ℕ0 )
23 7 adantr ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝐴 ∈ ( 𝐵 ∖ { 0 } ) )
24 1 2 4 20 22 23 domnexpgn0cl ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( 𝑜 𝐴 ) ∈ ( 𝐵 ∖ { 0 } ) )
25 24 adantr ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → ( 𝑜 𝐴 ) ∈ ( 𝐵 ∖ { 0 } ) )
26 15 adantr ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mgm )
27 simprr ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝑝 ∈ ℕ )
28 16 adantr ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝐴𝐵 )
29 9 4 mulgnncl ( ( ( mulGrp ‘ 𝑅 ) ∈ Mgm ∧ 𝑝 ∈ ℕ ∧ 𝐴𝐵 ) → ( 𝑝 𝐴 ) ∈ 𝐵 )
30 26 27 28 29 syl3anc ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( 𝑝 𝐴 ) ∈ 𝐵 )
31 30 adantr ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → ( 𝑝 𝐴 ) ∈ 𝐵 )
32 1 3 ringidcl ( 𝑅 ∈ Ring → 1𝐵 )
33 11 32 syl ( 𝜑1𝐵 )
34 33 ad2antrr ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → 1𝐵 )
35 5 ad2antrr ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → 𝑅 ∈ Domn )
36 11 adantr ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝑅 ∈ Ring )
37 24 eldifad ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( 𝑜 𝐴 ) ∈ 𝐵 )
38 1 19 3 36 37 ringridmd ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( ( 𝑜 𝐴 ) ( .r𝑅 ) 1 ) = ( 𝑜 𝐴 ) )
39 38 adantr ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → ( ( 𝑜 𝐴 ) ( .r𝑅 ) 1 ) = ( 𝑜 𝐴 ) )
40 simpr ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) )
41 mndsgrp ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( mulGrp ‘ 𝑅 ) ∈ Smgrp )
42 13 41 syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Smgrp )
43 42 ad2antrr ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Smgrp )
44 simplrl ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → 𝑜 ∈ ℕ )
45 28 adantr ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → 𝐴𝐵 )
46 8 19 mgpplusg ( .r𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
47 9 4 46 mulgnndir ( ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ∧ 𝐴𝐵 ) ) → ( ( 𝑜 + 𝑝 ) 𝐴 ) = ( ( 𝑜 𝐴 ) ( .r𝑅 ) ( 𝑝 𝐴 ) ) )
48 43 44 18 45 47 syl13anc ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → ( ( 𝑜 + 𝑝 ) 𝐴 ) = ( ( 𝑜 𝐴 ) ( .r𝑅 ) ( 𝑝 𝐴 ) ) )
49 39 40 48 3eqtrrd ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → ( ( 𝑜 𝐴 ) ( .r𝑅 ) ( 𝑝 𝐴 ) ) = ( ( 𝑜 𝐴 ) ( .r𝑅 ) 1 ) )
50 1 2 19 25 31 34 35 49 domnlcan ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → ( 𝑝 𝐴 ) = 1 )
51 oveq1 ( 𝑛 = 𝑝 → ( 𝑛 𝐴 ) = ( 𝑝 𝐴 ) )
52 51 eqeq1d ( 𝑛 = 𝑝 → ( ( 𝑛 𝐴 ) = 1 ↔ ( 𝑝 𝐴 ) = 1 ) )
53 52 rspcev ( ( 𝑝 ∈ ℕ ∧ ( 𝑝 𝐴 ) = 1 ) → ∃ 𝑛 ∈ ℕ ( 𝑛 𝐴 ) = 1 )
54 18 50 53 syl2anc ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) ) → ∃ 𝑛 ∈ ℕ ( 𝑛 𝐴 ) = 1 )
55 54 ex ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) → ∃ 𝑛 ∈ ℕ ( 𝑛 𝐴 ) = 1 ) )
56 55 rexlimdvva ( 𝜑 → ( ∃ 𝑜 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑜 𝐴 ) = ( ( 𝑜 + 𝑝 ) 𝐴 ) → ∃ 𝑛 ∈ ℕ ( 𝑛 𝐴 ) = 1 ) )
57 17 56 mpd ( 𝜑 → ∃ 𝑛 ∈ ℕ ( 𝑛 𝐴 ) = 1 )