Step |
Hyp |
Ref |
Expression |
1 |
|
fidomncyc.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
fidomncyc.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
fidomncyc.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
fidomncyc.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
5 |
|
fidomncyc.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
6 |
|
fidomncyc.f |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
7 |
|
fidomncyc.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 ∖ { 0 } ) ) |
8 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
9 |
8 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
10 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
12 |
8
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
14 |
|
mndmgm |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( mulGrp ‘ 𝑅 ) ∈ Mgm ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mgm ) |
16 |
7
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
17 |
9 4 15 6 16
|
fimgmcyc |
⊢ ( 𝜑 → ∃ 𝑜 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) |
18 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → 𝑝 ∈ ℕ ) |
19 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝑅 ∈ Domn ) |
21 |
|
nnnn0 |
⊢ ( 𝑜 ∈ ℕ → 𝑜 ∈ ℕ0 ) |
22 |
21
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝑜 ∈ ℕ0 ) |
23 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝐴 ∈ ( 𝐵 ∖ { 0 } ) ) |
24 |
1 2 4 20 22 23
|
domnexpgn0cl |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( 𝑜 ↑ 𝐴 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → ( 𝑜 ↑ 𝐴 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
26 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mgm ) |
27 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝑝 ∈ ℕ ) |
28 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝐴 ∈ 𝐵 ) |
29 |
9 4
|
mulgnncl |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mgm ∧ 𝑝 ∈ ℕ ∧ 𝐴 ∈ 𝐵 ) → ( 𝑝 ↑ 𝐴 ) ∈ 𝐵 ) |
30 |
26 27 28 29
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( 𝑝 ↑ 𝐴 ) ∈ 𝐵 ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → ( 𝑝 ↑ 𝐴 ) ∈ 𝐵 ) |
32 |
1 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
33 |
11 32
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → 1 ∈ 𝐵 ) |
35 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → 𝑅 ∈ Domn ) |
36 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → 𝑅 ∈ Ring ) |
37 |
24
|
eldifad |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( 𝑜 ↑ 𝐴 ) ∈ 𝐵 ) |
38 |
1 19 3 36 37
|
ringridmd |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( ( 𝑜 ↑ 𝐴 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑜 ↑ 𝐴 ) ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → ( ( 𝑜 ↑ 𝐴 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑜 ↑ 𝐴 ) ) |
40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) |
41 |
|
mndsgrp |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
42 |
13 41
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
44 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → 𝑜 ∈ ℕ ) |
45 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → 𝐴 ∈ 𝐵 ) |
46 |
8 19
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
47 |
9 4 46
|
mulgnndir |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ∧ 𝐴 ∈ 𝐵 ) ) → ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) = ( ( 𝑜 ↑ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑝 ↑ 𝐴 ) ) ) |
48 |
43 44 18 45 47
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) = ( ( 𝑜 ↑ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑝 ↑ 𝐴 ) ) ) |
49 |
39 40 48
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → ( ( 𝑜 ↑ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑝 ↑ 𝐴 ) ) = ( ( 𝑜 ↑ 𝐴 ) ( .r ‘ 𝑅 ) 1 ) ) |
50 |
1 2 19 25 31 34 35 49
|
domnlcan |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → ( 𝑝 ↑ 𝐴 ) = 1 ) |
51 |
|
oveq1 |
⊢ ( 𝑛 = 𝑝 → ( 𝑛 ↑ 𝐴 ) = ( 𝑝 ↑ 𝐴 ) ) |
52 |
51
|
eqeq1d |
⊢ ( 𝑛 = 𝑝 → ( ( 𝑛 ↑ 𝐴 ) = 1 ↔ ( 𝑝 ↑ 𝐴 ) = 1 ) ) |
53 |
52
|
rspcev |
⊢ ( ( 𝑝 ∈ ℕ ∧ ( 𝑝 ↑ 𝐴 ) = 1 ) → ∃ 𝑛 ∈ ℕ ( 𝑛 ↑ 𝐴 ) = 1 ) |
54 |
18 50 53
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) ∧ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ ( 𝑛 ↑ 𝐴 ) = 1 ) |
55 |
54
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) → ∃ 𝑛 ∈ ℕ ( 𝑛 ↑ 𝐴 ) = 1 ) ) |
56 |
55
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑜 ∈ ℕ ∃ 𝑝 ∈ ℕ ( 𝑜 ↑ 𝐴 ) = ( ( 𝑜 + 𝑝 ) ↑ 𝐴 ) → ∃ 𝑛 ∈ ℕ ( 𝑛 ↑ 𝐴 ) = 1 ) ) |
57 |
17 56
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ( 𝑛 ↑ 𝐴 ) = 1 ) |