Metamath Proof Explorer


Theorem domnexpgn0cl

Description: In a domain, a (nonnegative) power of a nonzero element is nonzero. (Contributed by SN, 6-Jul-2024)

Ref Expression
Hypotheses domnexpgn0cl.b 𝐵 = ( Base ‘ 𝑅 )
domnexpgn0cl.0 0 = ( 0g𝑅 )
domnexpgn0cl.e = ( .g ‘ ( mulGrp ‘ 𝑅 ) )
domnexpgn0cl.r ( 𝜑𝑅 ∈ Domn )
domnexpgn0cl.n ( 𝜑𝑁 ∈ ℕ0 )
domnexpgn0cl.x ( 𝜑𝑋 ∈ ( 𝐵 ∖ { 0 } ) )
Assertion domnexpgn0cl ( 𝜑 → ( 𝑁 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) )

Proof

Step Hyp Ref Expression
1 domnexpgn0cl.b 𝐵 = ( Base ‘ 𝑅 )
2 domnexpgn0cl.0 0 = ( 0g𝑅 )
3 domnexpgn0cl.e = ( .g ‘ ( mulGrp ‘ 𝑅 ) )
4 domnexpgn0cl.r ( 𝜑𝑅 ∈ Domn )
5 domnexpgn0cl.n ( 𝜑𝑁 ∈ ℕ0 )
6 domnexpgn0cl.x ( 𝜑𝑋 ∈ ( 𝐵 ∖ { 0 } ) )
7 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
8 7 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
9 domnring ( 𝑅 ∈ Domn → 𝑅 ∈ Ring )
10 7 ringmgp ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
11 4 9 10 3syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
12 6 eldifad ( 𝜑𝑋𝐵 )
13 8 3 11 5 12 mulgnn0cld ( 𝜑 → ( 𝑁 𝑋 ) ∈ 𝐵 )
14 oveq1 ( 𝑥 = 0 → ( 𝑥 𝑋 ) = ( 0 𝑋 ) )
15 14 neeq1d ( 𝑥 = 0 → ( ( 𝑥 𝑋 ) ≠ 0 ↔ ( 0 𝑋 ) ≠ 0 ) )
16 oveq1 ( 𝑥 = 𝑦 → ( 𝑥 𝑋 ) = ( 𝑦 𝑋 ) )
17 16 neeq1d ( 𝑥 = 𝑦 → ( ( 𝑥 𝑋 ) ≠ 0 ↔ ( 𝑦 𝑋 ) ≠ 0 ) )
18 oveq1 ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 𝑋 ) = ( ( 𝑦 + 1 ) 𝑋 ) )
19 18 neeq1d ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 𝑋 ) ≠ 0 ↔ ( ( 𝑦 + 1 ) 𝑋 ) ≠ 0 ) )
20 oveq1 ( 𝑥 = 𝑁 → ( 𝑥 𝑋 ) = ( 𝑁 𝑋 ) )
21 20 neeq1d ( 𝑥 = 𝑁 → ( ( 𝑥 𝑋 ) ≠ 0 ↔ ( 𝑁 𝑋 ) ≠ 0 ) )
22 eqid ( 1r𝑅 ) = ( 1r𝑅 )
23 7 22 ringidval ( 1r𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) )
24 8 23 3 mulg0 ( 𝑋𝐵 → ( 0 𝑋 ) = ( 1r𝑅 ) )
25 12 24 syl ( 𝜑 → ( 0 𝑋 ) = ( 1r𝑅 ) )
26 domnnzr ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing )
27 22 2 nzrnz ( 𝑅 ∈ NzRing → ( 1r𝑅 ) ≠ 0 )
28 4 26 27 3syl ( 𝜑 → ( 1r𝑅 ) ≠ 0 )
29 25 28 eqnetrd ( 𝜑 → ( 0 𝑋 ) ≠ 0 )
30 11 ad2antrr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑦 𝑋 ) ≠ 0 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
31 simplr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑦 𝑋 ) ≠ 0 ) → 𝑦 ∈ ℕ0 )
32 12 ad2antrr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑦 𝑋 ) ≠ 0 ) → 𝑋𝐵 )
33 eqid ( .r𝑅 ) = ( .r𝑅 )
34 7 33 mgpplusg ( .r𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
35 8 3 34 mulgnn0p1 ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵 ) → ( ( 𝑦 + 1 ) 𝑋 ) = ( ( 𝑦 𝑋 ) ( .r𝑅 ) 𝑋 ) )
36 30 31 32 35 syl3anc ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑦 𝑋 ) ≠ 0 ) → ( ( 𝑦 + 1 ) 𝑋 ) = ( ( 𝑦 𝑋 ) ( .r𝑅 ) 𝑋 ) )
37 4 ad2antrr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑦 𝑋 ) ≠ 0 ) → 𝑅 ∈ Domn )
38 8 3 30 31 32 mulgnn0cld ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑦 𝑋 ) ≠ 0 ) → ( 𝑦 𝑋 ) ∈ 𝐵 )
39 simpr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑦 𝑋 ) ≠ 0 ) → ( 𝑦 𝑋 ) ≠ 0 )
40 eldifsni ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → 𝑋0 )
41 6 40 syl ( 𝜑𝑋0 )
42 41 ad2antrr ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑦 𝑋 ) ≠ 0 ) → 𝑋0 )
43 1 33 2 domnmuln0 ( ( 𝑅 ∈ Domn ∧ ( ( 𝑦 𝑋 ) ∈ 𝐵 ∧ ( 𝑦 𝑋 ) ≠ 0 ) ∧ ( 𝑋𝐵𝑋0 ) ) → ( ( 𝑦 𝑋 ) ( .r𝑅 ) 𝑋 ) ≠ 0 )
44 37 38 39 32 42 43 syl122anc ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑦 𝑋 ) ≠ 0 ) → ( ( 𝑦 𝑋 ) ( .r𝑅 ) 𝑋 ) ≠ 0 )
45 36 44 eqnetrd ( ( ( 𝜑𝑦 ∈ ℕ0 ) ∧ ( 𝑦 𝑋 ) ≠ 0 ) → ( ( 𝑦 + 1 ) 𝑋 ) ≠ 0 )
46 15 17 19 21 29 45 nn0indd ( ( 𝜑𝑁 ∈ ℕ0 ) → ( 𝑁 𝑋 ) ≠ 0 )
47 5 46 mpdan ( 𝜑 → ( 𝑁 𝑋 ) ≠ 0 )
48 13 47 eldifsnd ( 𝜑 → ( 𝑁 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) )