Step |
Hyp |
Ref |
Expression |
1 |
|
domnexpgn0cl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
domnexpgn0cl.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
domnexpgn0cl.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
4 |
|
domnexpgn0cl.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
5 |
|
domnexpgn0cl.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
domnexpgn0cl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
7 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
8 |
7 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
9 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
10 |
7
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
11 |
4 9 10
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
12 |
6
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
13 |
8 3 11 5 12
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝑋 ) ∈ 𝐵 ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 𝑋 ) = ( 0 ↑ 𝑋 ) ) |
15 |
14
|
neeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 𝑋 ) ≠ 0 ↔ ( 0 ↑ 𝑋 ) ≠ 0 ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝑋 ) = ( 𝑦 ↑ 𝑋 ) ) |
17 |
16
|
neeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 𝑋 ) ≠ 0 ↔ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ 𝑋 ) = ( ( 𝑦 + 1 ) ↑ 𝑋 ) ) |
19 |
18
|
neeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ 𝑋 ) ≠ 0 ↔ ( ( 𝑦 + 1 ) ↑ 𝑋 ) ≠ 0 ) ) |
20 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ↑ 𝑋 ) = ( 𝑁 ↑ 𝑋 ) ) |
21 |
20
|
neeq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ↑ 𝑋 ) ≠ 0 ↔ ( 𝑁 ↑ 𝑋 ) ≠ 0 ) ) |
22 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
23 |
7 22
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
24 |
8 23 3
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
25 |
12 24
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
26 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
27 |
22 2
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ 0 ) |
28 |
4 26 27
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ 0 ) |
29 |
25 28
|
eqnetrd |
⊢ ( 𝜑 → ( 0 ↑ 𝑋 ) ≠ 0 ) |
30 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
31 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) → 𝑦 ∈ ℕ0 ) |
32 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) → 𝑋 ∈ 𝐵 ) |
33 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
34 |
7 33
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
35 |
8 3 34
|
mulgnn0p1 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) ↑ 𝑋 ) = ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
36 |
30 31 32 35
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) → ( ( 𝑦 + 1 ) ↑ 𝑋 ) = ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
37 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) → 𝑅 ∈ Domn ) |
38 |
8 3 30 31 32
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) → ( 𝑦 ↑ 𝑋 ) ∈ 𝐵 ) |
39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) → ( 𝑦 ↑ 𝑋 ) ≠ 0 ) |
40 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
41 |
6 40
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) → 𝑋 ≠ 0 ) |
43 |
1 33 2
|
domnmuln0 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( ( 𝑦 ↑ 𝑋 ) ∈ 𝐵 ∧ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ≠ 0 ) |
44 |
37 38 39 32 42 43
|
syl122anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) → ( ( 𝑦 ↑ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ≠ 0 ) |
45 |
36 44
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( 𝑦 ↑ 𝑋 ) ≠ 0 ) → ( ( 𝑦 + 1 ) ↑ 𝑋 ) ≠ 0 ) |
46 |
15 17 19 21 29 45
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑋 ) ≠ 0 ) |
47 |
5 46
|
mpdan |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝑋 ) ≠ 0 ) |
48 |
13 47
|
eldifsnd |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ) |