Metamath Proof Explorer
Description: A multiplicative inverse in a division ring is nonzero. ( recne0d analog). (Contributed by SN, 14-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
drnginvrn0d.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
drnginvrn0d.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
|
|
drnginvrn0d.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
|
|
drnginvrn0d.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
|
|
drnginvrn0d.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
drnginvrn0d.1 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
|
Assertion |
drnginvrn0d |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ≠ 0 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drnginvrn0d.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
drnginvrn0d.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
drnginvrn0d.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 4 |
|
drnginvrn0d.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 5 |
|
drnginvrn0d.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
drnginvrn0d.1 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 7 |
1 2 3
|
drnginvrn0 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ≠ 0 ) |
| 8 |
4 5 6 7
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ≠ 0 ) |