Metamath Proof Explorer
Description: A multiplicative inverse in a division ring is nonzero. ( recne0d analog). (Contributed by SN, 14-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
drnginvrcld.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
drnginvrcld.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
|
|
drnginvrcld.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
|
|
drnginvrcld.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
|
|
drnginvrcld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
drnginvrcld.1 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
|
Assertion |
drnginvrn0d |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ≠ 0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
drnginvrcld.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drnginvrcld.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drnginvrcld.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
4 |
|
drnginvrcld.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
5 |
|
drnginvrcld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
drnginvrcld.1 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
7 |
1 2 3
|
drnginvrn0 |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ≠ 0 ) |
8 |
4 5 6 7
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ≠ 0 ) |