Metamath Proof Explorer


Theorem drnginvrn0d

Description: A multiplicative inverse in a division ring is nonzero. ( recne0d analog). (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses drnginvrcld.b
|- B = ( Base ` R )
drnginvrcld.0
|- .0. = ( 0g ` R )
drnginvrcld.i
|- I = ( invr ` R )
drnginvrcld.r
|- ( ph -> R e. DivRing )
drnginvrcld.x
|- ( ph -> X e. B )
drnginvrcld.1
|- ( ph -> X =/= .0. )
Assertion drnginvrn0d
|- ( ph -> ( I ` X ) =/= .0. )

Proof

Step Hyp Ref Expression
1 drnginvrcld.b
 |-  B = ( Base ` R )
2 drnginvrcld.0
 |-  .0. = ( 0g ` R )
3 drnginvrcld.i
 |-  I = ( invr ` R )
4 drnginvrcld.r
 |-  ( ph -> R e. DivRing )
5 drnginvrcld.x
 |-  ( ph -> X e. B )
6 drnginvrcld.1
 |-  ( ph -> X =/= .0. )
7 1 2 3 drnginvrn0
 |-  ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) =/= .0. )
8 4 5 6 7 syl3anc
 |-  ( ph -> ( I ` X ) =/= .0. )