Step |
Hyp |
Ref |
Expression |
1 |
|
domnexpgn0cl.b |
|
2 |
|
domnexpgn0cl.0 |
|
3 |
|
domnexpgn0cl.e |
|
4 |
|
domnexpgn0cl.r |
|
5 |
|
domnexpgn0cl.n |
|
6 |
|
domnexpgn0cl.x |
|
7 |
|
eqid |
|
8 |
7 1
|
mgpbas |
|
9 |
|
domnring |
|
10 |
7
|
ringmgp |
|
11 |
4 9 10
|
3syl |
|
12 |
6
|
eldifad |
|
13 |
8 3 11 5 12
|
mulgnn0cld |
|
14 |
|
oveq1 |
|
15 |
14
|
neeq1d |
|
16 |
|
oveq1 |
|
17 |
16
|
neeq1d |
|
18 |
|
oveq1 |
|
19 |
18
|
neeq1d |
|
20 |
|
oveq1 |
|
21 |
20
|
neeq1d |
|
22 |
|
eqid |
|
23 |
7 22
|
ringidval |
|
24 |
8 23 3
|
mulg0 |
|
25 |
12 24
|
syl |
|
26 |
|
domnnzr |
|
27 |
22 2
|
nzrnz |
|
28 |
4 26 27
|
3syl |
|
29 |
25 28
|
eqnetrd |
|
30 |
11
|
ad2antrr |
|
31 |
|
simplr |
|
32 |
12
|
ad2antrr |
|
33 |
|
eqid |
|
34 |
7 33
|
mgpplusg |
|
35 |
8 3 34
|
mulgnn0p1 |
|
36 |
30 31 32 35
|
syl3anc |
|
37 |
4
|
ad2antrr |
|
38 |
8 3 30 31 32
|
mulgnn0cld |
|
39 |
|
simpr |
|
40 |
|
eldifsni |
|
41 |
6 40
|
syl |
|
42 |
41
|
ad2antrr |
|
43 |
1 33 2
|
domnmuln0 |
|
44 |
37 38 39 32 42 43
|
syl122anc |
|
45 |
36 44
|
eqnetrd |
|
46 |
15 17 19 21 29 45
|
nn0indd |
|
47 |
5 46
|
mpdan |
|
48 |
13 47
|
eldifsnd |
|