| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnexpgn0cl.b |
|
| 2 |
|
domnexpgn0cl.0 |
|
| 3 |
|
domnexpgn0cl.e |
|
| 4 |
|
domnexpgn0cl.r |
|
| 5 |
|
domnexpgn0cl.n |
|
| 6 |
|
domnexpgn0cl.x |
|
| 7 |
|
eqid |
|
| 8 |
7 1
|
mgpbas |
|
| 9 |
|
domnring |
|
| 10 |
7
|
ringmgp |
|
| 11 |
4 9 10
|
3syl |
|
| 12 |
6
|
eldifad |
|
| 13 |
8 3 11 5 12
|
mulgnn0cld |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
neeq1d |
|
| 16 |
|
oveq1 |
|
| 17 |
16
|
neeq1d |
|
| 18 |
|
oveq1 |
|
| 19 |
18
|
neeq1d |
|
| 20 |
|
oveq1 |
|
| 21 |
20
|
neeq1d |
|
| 22 |
|
eqid |
|
| 23 |
7 22
|
ringidval |
|
| 24 |
8 23 3
|
mulg0 |
|
| 25 |
12 24
|
syl |
|
| 26 |
|
domnnzr |
|
| 27 |
22 2
|
nzrnz |
|
| 28 |
4 26 27
|
3syl |
|
| 29 |
25 28
|
eqnetrd |
|
| 30 |
11
|
ad2antrr |
|
| 31 |
|
simplr |
|
| 32 |
12
|
ad2antrr |
|
| 33 |
|
eqid |
|
| 34 |
7 33
|
mgpplusg |
|
| 35 |
8 3 34
|
mulgnn0p1 |
|
| 36 |
30 31 32 35
|
syl3anc |
|
| 37 |
4
|
ad2antrr |
|
| 38 |
8 3 30 31 32
|
mulgnn0cld |
|
| 39 |
|
simpr |
|
| 40 |
|
eldifsni |
|
| 41 |
6 40
|
syl |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
1 33 2
|
domnmuln0 |
|
| 44 |
37 38 39 32 42 43
|
syl122anc |
|
| 45 |
36 44
|
eqnetrd |
|
| 46 |
15 17 19 21 29 45
|
nn0indd |
|
| 47 |
5 46
|
mpdan |
|
| 48 |
13 47
|
eldifsnd |
|