Step |
Hyp |
Ref |
Expression |
1 |
|
domnexpgn0cl.b |
|- B = ( Base ` R ) |
2 |
|
domnexpgn0cl.0 |
|- .0. = ( 0g ` R ) |
3 |
|
domnexpgn0cl.e |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
4 |
|
domnexpgn0cl.r |
|- ( ph -> R e. Domn ) |
5 |
|
domnexpgn0cl.n |
|- ( ph -> N e. NN0 ) |
6 |
|
domnexpgn0cl.x |
|- ( ph -> X e. ( B \ { .0. } ) ) |
7 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
8 |
7 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
9 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
10 |
7
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
11 |
4 9 10
|
3syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
12 |
6
|
eldifad |
|- ( ph -> X e. B ) |
13 |
8 3 11 5 12
|
mulgnn0cld |
|- ( ph -> ( N .^ X ) e. B ) |
14 |
|
oveq1 |
|- ( x = 0 -> ( x .^ X ) = ( 0 .^ X ) ) |
15 |
14
|
neeq1d |
|- ( x = 0 -> ( ( x .^ X ) =/= .0. <-> ( 0 .^ X ) =/= .0. ) ) |
16 |
|
oveq1 |
|- ( x = y -> ( x .^ X ) = ( y .^ X ) ) |
17 |
16
|
neeq1d |
|- ( x = y -> ( ( x .^ X ) =/= .0. <-> ( y .^ X ) =/= .0. ) ) |
18 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x .^ X ) = ( ( y + 1 ) .^ X ) ) |
19 |
18
|
neeq1d |
|- ( x = ( y + 1 ) -> ( ( x .^ X ) =/= .0. <-> ( ( y + 1 ) .^ X ) =/= .0. ) ) |
20 |
|
oveq1 |
|- ( x = N -> ( x .^ X ) = ( N .^ X ) ) |
21 |
20
|
neeq1d |
|- ( x = N -> ( ( x .^ X ) =/= .0. <-> ( N .^ X ) =/= .0. ) ) |
22 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
23 |
7 22
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
24 |
8 23 3
|
mulg0 |
|- ( X e. B -> ( 0 .^ X ) = ( 1r ` R ) ) |
25 |
12 24
|
syl |
|- ( ph -> ( 0 .^ X ) = ( 1r ` R ) ) |
26 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
27 |
22 2
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
28 |
4 26 27
|
3syl |
|- ( ph -> ( 1r ` R ) =/= .0. ) |
29 |
25 28
|
eqnetrd |
|- ( ph -> ( 0 .^ X ) =/= .0. ) |
30 |
11
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) =/= .0. ) -> ( mulGrp ` R ) e. Mnd ) |
31 |
|
simplr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) =/= .0. ) -> y e. NN0 ) |
32 |
12
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) =/= .0. ) -> X e. B ) |
33 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
34 |
7 33
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
35 |
8 3 34
|
mulgnn0p1 |
|- ( ( ( mulGrp ` R ) e. Mnd /\ y e. NN0 /\ X e. B ) -> ( ( y + 1 ) .^ X ) = ( ( y .^ X ) ( .r ` R ) X ) ) |
36 |
30 31 32 35
|
syl3anc |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) =/= .0. ) -> ( ( y + 1 ) .^ X ) = ( ( y .^ X ) ( .r ` R ) X ) ) |
37 |
4
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) =/= .0. ) -> R e. Domn ) |
38 |
8 3 30 31 32
|
mulgnn0cld |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) =/= .0. ) -> ( y .^ X ) e. B ) |
39 |
|
simpr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) =/= .0. ) -> ( y .^ X ) =/= .0. ) |
40 |
|
eldifsni |
|- ( X e. ( B \ { .0. } ) -> X =/= .0. ) |
41 |
6 40
|
syl |
|- ( ph -> X =/= .0. ) |
42 |
41
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) =/= .0. ) -> X =/= .0. ) |
43 |
1 33 2
|
domnmuln0 |
|- ( ( R e. Domn /\ ( ( y .^ X ) e. B /\ ( y .^ X ) =/= .0. ) /\ ( X e. B /\ X =/= .0. ) ) -> ( ( y .^ X ) ( .r ` R ) X ) =/= .0. ) |
44 |
37 38 39 32 42 43
|
syl122anc |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) =/= .0. ) -> ( ( y .^ X ) ( .r ` R ) X ) =/= .0. ) |
45 |
36 44
|
eqnetrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( y .^ X ) =/= .0. ) -> ( ( y + 1 ) .^ X ) =/= .0. ) |
46 |
15 17 19 21 29 45
|
nn0indd |
|- ( ( ph /\ N e. NN0 ) -> ( N .^ X ) =/= .0. ) |
47 |
5 46
|
mpdan |
|- ( ph -> ( N .^ X ) =/= .0. ) |
48 |
13 47
|
eldifsnd |
|- ( ph -> ( N .^ X ) e. ( B \ { .0. } ) ) |