Step |
Hyp |
Ref |
Expression |
1 |
|
fiabv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
2 |
|
fiabv.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
fiabv.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
fiabv.t |
⊢ 𝑇 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 0 , 0 , 1 ) ) |
5 |
|
fiabv.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
6 |
|
fiabv.f |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
7 |
1 2
|
abvf |
⊢ ( 𝑎 ∈ 𝐴 → 𝑎 : 𝐵 ⟶ ℝ ) |
8 |
7
|
ffnd |
⊢ ( 𝑎 ∈ 𝐴 → 𝑎 Fn 𝐵 ) |
9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 Fn 𝐵 ) |
10 |
1 2 3 4
|
abvtrivg |
⊢ ( 𝑅 ∈ Domn → 𝑇 ∈ 𝐴 ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
12 |
1 2
|
abvf |
⊢ ( 𝑇 ∈ 𝐴 → 𝑇 : 𝐵 ⟶ ℝ ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝑇 : 𝐵 ⟶ ℝ ) |
14 |
13
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn 𝐵 ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑇 Fn 𝐵 ) |
16 |
|
fveq2 |
⊢ ( 𝑏 = 0 → ( 𝑎 ‘ 𝑏 ) = ( 𝑎 ‘ 0 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑏 = 0 → ( 𝑇 ‘ 𝑏 ) = ( 𝑇 ‘ 0 ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑏 = 0 → ( ( 𝑎 ‘ 𝑏 ) = ( 𝑇 ‘ 𝑏 ) ↔ ( 𝑎 ‘ 0 ) = ( 𝑇 ‘ 0 ) ) ) |
19 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
20 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑅 ) ) = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
21 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) → 𝑅 ∈ Domn ) |
22 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) → 𝐵 ∈ Fin ) |
23 |
|
eldifsn |
⊢ ( 𝑏 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑏 ∈ 𝐵 ∧ 𝑏 ≠ 0 ) ) |
24 |
23
|
biimpri |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑏 ≠ 0 ) → 𝑏 ∈ ( 𝐵 ∖ { 0 } ) ) |
25 |
24
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) → 𝑏 ∈ ( 𝐵 ∖ { 0 } ) ) |
26 |
2 3 19 20 21 22 25
|
fidomncyc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) → ∃ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) |
27 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) |
28 |
27
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → ( 𝑎 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) ) = ( 𝑎 ‘ ( 1r ‘ 𝑅 ) ) ) |
29 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
30 |
5 29
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
31 |
30
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → 𝑅 ∈ NzRing ) |
32 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → 𝑎 ∈ 𝐴 ) |
33 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → 𝑏 ∈ 𝐵 ) |
34 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → 𝑛 ∈ ℕ ) |
35 |
34
|
nnnn0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → 𝑛 ∈ ℕ0 ) |
36 |
1 20 2 31 32 33 35
|
abvexp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → ( 𝑎 ‘ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) ) = ( ( 𝑎 ‘ 𝑏 ) ↑ 𝑛 ) ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
38 |
19 3
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ 0 ) |
39 |
29 38
|
syl |
⊢ ( 𝑅 ∈ Domn → ( 1r ‘ 𝑅 ) ≠ 0 ) |
40 |
5 39
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ 0 ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 1r ‘ 𝑅 ) ≠ 0 ) |
42 |
1 19 3
|
abv1z |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ 0 ) → ( 𝑎 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
43 |
37 41 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
44 |
43
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → ( 𝑎 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
45 |
28 36 44
|
3eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → ( ( 𝑎 ‘ 𝑏 ) ↑ 𝑛 ) = 1 ) |
46 |
1 2
|
abvcl |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ‘ 𝑏 ) ∈ ℝ ) |
47 |
32 33 46
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → ( 𝑎 ‘ 𝑏 ) ∈ ℝ ) |
48 |
1 2
|
abvge0 |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → 0 ≤ ( 𝑎 ‘ 𝑏 ) ) |
49 |
32 33 48
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → 0 ≤ ( 𝑎 ‘ 𝑏 ) ) |
50 |
47 34 49
|
expeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → ( ( ( 𝑎 ‘ 𝑏 ) ↑ 𝑛 ) = 1 ↔ ( 𝑎 ‘ 𝑏 ) = 1 ) ) |
51 |
45 50
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) ) → ( 𝑎 ‘ 𝑏 ) = 1 ) |
52 |
26 51
|
rexlimddv |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) → ( 𝑎 ‘ 𝑏 ) = 1 ) |
53 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 = 0 ↔ 𝑏 = 0 ) ) |
54 |
53
|
ifbid |
⊢ ( 𝑥 = 𝑏 → if ( 𝑥 = 0 , 0 , 1 ) = if ( 𝑏 = 0 , 0 , 1 ) ) |
55 |
|
ifnefalse |
⊢ ( 𝑏 ≠ 0 → if ( 𝑏 = 0 , 0 , 1 ) = 1 ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) → if ( 𝑏 = 0 , 0 , 1 ) = 1 ) |
57 |
54 56
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) ∧ 𝑥 = 𝑏 ) → if ( 𝑥 = 0 , 0 , 1 ) = 1 ) |
58 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) → 𝑏 ∈ 𝐵 ) |
59 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) → 1 ∈ ℂ ) |
60 |
4 57 58 59
|
fvmptd2 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) → ( 𝑇 ‘ 𝑏 ) = 1 ) |
61 |
60
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) → ( 𝑇 ‘ 𝑏 ) = 1 ) |
62 |
52 61
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 ≠ 0 ) → ( 𝑎 ‘ 𝑏 ) = ( 𝑇 ‘ 𝑏 ) ) |
63 |
1 3
|
abv0 |
⊢ ( 𝑎 ∈ 𝐴 → ( 𝑎 ‘ 0 ) = 0 ) |
64 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ‘ 0 ) = 0 ) |
65 |
1 3
|
abv0 |
⊢ ( 𝑇 ∈ 𝐴 → ( 𝑇 ‘ 0 ) = 0 ) |
66 |
11 65
|
syl |
⊢ ( 𝜑 → ( 𝑇 ‘ 0 ) = 0 ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑇 ‘ 0 ) = 0 ) |
68 |
64 67
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑎 ‘ 0 ) = ( 𝑇 ‘ 0 ) ) |
69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ‘ 0 ) = ( 𝑇 ‘ 0 ) ) |
70 |
18 62 69
|
pm2.61ne |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ‘ 𝑏 ) = ( 𝑇 ‘ 𝑏 ) ) |
71 |
9 15 70
|
eqfnfvd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → 𝑎 = 𝑇 ) |
72 |
71 11
|
eqsnd |
⊢ ( 𝜑 → 𝐴 = { 𝑇 } ) |