| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fiabv.a |
|- A = ( AbsVal ` R ) |
| 2 |
|
fiabv.b |
|- B = ( Base ` R ) |
| 3 |
|
fiabv.0 |
|- .0. = ( 0g ` R ) |
| 4 |
|
fiabv.t |
|- T = ( x e. B |-> if ( x = .0. , 0 , 1 ) ) |
| 5 |
|
fiabv.r |
|- ( ph -> R e. Domn ) |
| 6 |
|
fiabv.f |
|- ( ph -> B e. Fin ) |
| 7 |
1 2
|
abvf |
|- ( a e. A -> a : B --> RR ) |
| 8 |
7
|
ffnd |
|- ( a e. A -> a Fn B ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ a e. A ) -> a Fn B ) |
| 10 |
1 2 3 4
|
abvtrivg |
|- ( R e. Domn -> T e. A ) |
| 11 |
5 10
|
syl |
|- ( ph -> T e. A ) |
| 12 |
1 2
|
abvf |
|- ( T e. A -> T : B --> RR ) |
| 13 |
11 12
|
syl |
|- ( ph -> T : B --> RR ) |
| 14 |
13
|
ffnd |
|- ( ph -> T Fn B ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ a e. A ) -> T Fn B ) |
| 16 |
|
fveq2 |
|- ( b = .0. -> ( a ` b ) = ( a ` .0. ) ) |
| 17 |
|
fveq2 |
|- ( b = .0. -> ( T ` b ) = ( T ` .0. ) ) |
| 18 |
16 17
|
eqeq12d |
|- ( b = .0. -> ( ( a ` b ) = ( T ` b ) <-> ( a ` .0. ) = ( T ` .0. ) ) ) |
| 19 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 20 |
|
eqid |
|- ( .g ` ( mulGrp ` R ) ) = ( .g ` ( mulGrp ` R ) ) |
| 21 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> R e. Domn ) |
| 22 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> B e. Fin ) |
| 23 |
|
eldifsn |
|- ( b e. ( B \ { .0. } ) <-> ( b e. B /\ b =/= .0. ) ) |
| 24 |
23
|
biimpri |
|- ( ( b e. B /\ b =/= .0. ) -> b e. ( B \ { .0. } ) ) |
| 25 |
24
|
adantll |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> b e. ( B \ { .0. } ) ) |
| 26 |
2 3 19 20 21 22 25
|
fidomncyc |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> E. n e. NN ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) |
| 27 |
|
simprr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) |
| 28 |
27
|
fveq2d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( a ` ( n ( .g ` ( mulGrp ` R ) ) b ) ) = ( a ` ( 1r ` R ) ) ) |
| 29 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
| 30 |
5 29
|
syl |
|- ( ph -> R e. NzRing ) |
| 31 |
30
|
ad4antr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> R e. NzRing ) |
| 32 |
|
simp-4r |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> a e. A ) |
| 33 |
|
simpllr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> b e. B ) |
| 34 |
|
simprl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> n e. NN ) |
| 35 |
34
|
nnnn0d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> n e. NN0 ) |
| 36 |
1 20 2 31 32 33 35
|
abvexp |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( a ` ( n ( .g ` ( mulGrp ` R ) ) b ) ) = ( ( a ` b ) ^ n ) ) |
| 37 |
|
simpr |
|- ( ( ph /\ a e. A ) -> a e. A ) |
| 38 |
19 3
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
| 39 |
29 38
|
syl |
|- ( R e. Domn -> ( 1r ` R ) =/= .0. ) |
| 40 |
5 39
|
syl |
|- ( ph -> ( 1r ` R ) =/= .0. ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ a e. A ) -> ( 1r ` R ) =/= .0. ) |
| 42 |
1 19 3
|
abv1z |
|- ( ( a e. A /\ ( 1r ` R ) =/= .0. ) -> ( a ` ( 1r ` R ) ) = 1 ) |
| 43 |
37 41 42
|
syl2anc |
|- ( ( ph /\ a e. A ) -> ( a ` ( 1r ` R ) ) = 1 ) |
| 44 |
43
|
ad3antrrr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( a ` ( 1r ` R ) ) = 1 ) |
| 45 |
28 36 44
|
3eqtr3d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( ( a ` b ) ^ n ) = 1 ) |
| 46 |
1 2
|
abvcl |
|- ( ( a e. A /\ b e. B ) -> ( a ` b ) e. RR ) |
| 47 |
32 33 46
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( a ` b ) e. RR ) |
| 48 |
1 2
|
abvge0 |
|- ( ( a e. A /\ b e. B ) -> 0 <_ ( a ` b ) ) |
| 49 |
32 33 48
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> 0 <_ ( a ` b ) ) |
| 50 |
47 34 49
|
expeq1d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( ( ( a ` b ) ^ n ) = 1 <-> ( a ` b ) = 1 ) ) |
| 51 |
45 50
|
mpbid |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( a ` b ) = 1 ) |
| 52 |
26 51
|
rexlimddv |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> ( a ` b ) = 1 ) |
| 53 |
|
eqeq1 |
|- ( x = b -> ( x = .0. <-> b = .0. ) ) |
| 54 |
53
|
ifbid |
|- ( x = b -> if ( x = .0. , 0 , 1 ) = if ( b = .0. , 0 , 1 ) ) |
| 55 |
|
ifnefalse |
|- ( b =/= .0. -> if ( b = .0. , 0 , 1 ) = 1 ) |
| 56 |
55
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ b =/= .0. ) -> if ( b = .0. , 0 , 1 ) = 1 ) |
| 57 |
54 56
|
sylan9eqr |
|- ( ( ( ( ph /\ b e. B ) /\ b =/= .0. ) /\ x = b ) -> if ( x = .0. , 0 , 1 ) = 1 ) |
| 58 |
|
simplr |
|- ( ( ( ph /\ b e. B ) /\ b =/= .0. ) -> b e. B ) |
| 59 |
|
1cnd |
|- ( ( ( ph /\ b e. B ) /\ b =/= .0. ) -> 1 e. CC ) |
| 60 |
4 57 58 59
|
fvmptd2 |
|- ( ( ( ph /\ b e. B ) /\ b =/= .0. ) -> ( T ` b ) = 1 ) |
| 61 |
60
|
adantllr |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> ( T ` b ) = 1 ) |
| 62 |
52 61
|
eqtr4d |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> ( a ` b ) = ( T ` b ) ) |
| 63 |
1 3
|
abv0 |
|- ( a e. A -> ( a ` .0. ) = 0 ) |
| 64 |
63
|
adantl |
|- ( ( ph /\ a e. A ) -> ( a ` .0. ) = 0 ) |
| 65 |
1 3
|
abv0 |
|- ( T e. A -> ( T ` .0. ) = 0 ) |
| 66 |
11 65
|
syl |
|- ( ph -> ( T ` .0. ) = 0 ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ a e. A ) -> ( T ` .0. ) = 0 ) |
| 68 |
64 67
|
eqtr4d |
|- ( ( ph /\ a e. A ) -> ( a ` .0. ) = ( T ` .0. ) ) |
| 69 |
68
|
adantr |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( a ` .0. ) = ( T ` .0. ) ) |
| 70 |
18 62 69
|
pm2.61ne |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( a ` b ) = ( T ` b ) ) |
| 71 |
9 15 70
|
eqfnfvd |
|- ( ( ph /\ a e. A ) -> a = T ) |
| 72 |
71 11
|
eqsnd |
|- ( ph -> A = { T } ) |