Step |
Hyp |
Ref |
Expression |
1 |
|
fiabv.a |
|- A = ( AbsVal ` R ) |
2 |
|
fiabv.b |
|- B = ( Base ` R ) |
3 |
|
fiabv.0 |
|- .0. = ( 0g ` R ) |
4 |
|
fiabv.t |
|- T = ( x e. B |-> if ( x = .0. , 0 , 1 ) ) |
5 |
|
fiabv.r |
|- ( ph -> R e. Domn ) |
6 |
|
fiabv.f |
|- ( ph -> B e. Fin ) |
7 |
1 2
|
abvf |
|- ( a e. A -> a : B --> RR ) |
8 |
7
|
ffnd |
|- ( a e. A -> a Fn B ) |
9 |
8
|
adantl |
|- ( ( ph /\ a e. A ) -> a Fn B ) |
10 |
1 2 3 4
|
abvtrivg |
|- ( R e. Domn -> T e. A ) |
11 |
5 10
|
syl |
|- ( ph -> T e. A ) |
12 |
1 2
|
abvf |
|- ( T e. A -> T : B --> RR ) |
13 |
11 12
|
syl |
|- ( ph -> T : B --> RR ) |
14 |
13
|
ffnd |
|- ( ph -> T Fn B ) |
15 |
14
|
adantr |
|- ( ( ph /\ a e. A ) -> T Fn B ) |
16 |
|
fveq2 |
|- ( b = .0. -> ( a ` b ) = ( a ` .0. ) ) |
17 |
|
fveq2 |
|- ( b = .0. -> ( T ` b ) = ( T ` .0. ) ) |
18 |
16 17
|
eqeq12d |
|- ( b = .0. -> ( ( a ` b ) = ( T ` b ) <-> ( a ` .0. ) = ( T ` .0. ) ) ) |
19 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
20 |
|
eqid |
|- ( .g ` ( mulGrp ` R ) ) = ( .g ` ( mulGrp ` R ) ) |
21 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> R e. Domn ) |
22 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> B e. Fin ) |
23 |
|
eldifsn |
|- ( b e. ( B \ { .0. } ) <-> ( b e. B /\ b =/= .0. ) ) |
24 |
23
|
biimpri |
|- ( ( b e. B /\ b =/= .0. ) -> b e. ( B \ { .0. } ) ) |
25 |
24
|
adantll |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> b e. ( B \ { .0. } ) ) |
26 |
2 3 19 20 21 22 25
|
fidomncyc |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> E. n e. NN ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) |
27 |
|
simprr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) |
28 |
27
|
fveq2d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( a ` ( n ( .g ` ( mulGrp ` R ) ) b ) ) = ( a ` ( 1r ` R ) ) ) |
29 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
30 |
5 29
|
syl |
|- ( ph -> R e. NzRing ) |
31 |
30
|
ad4antr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> R e. NzRing ) |
32 |
|
simp-4r |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> a e. A ) |
33 |
|
simpllr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> b e. B ) |
34 |
|
simprl |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> n e. NN ) |
35 |
34
|
nnnn0d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> n e. NN0 ) |
36 |
1 20 2 31 32 33 35
|
abvexp |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( a ` ( n ( .g ` ( mulGrp ` R ) ) b ) ) = ( ( a ` b ) ^ n ) ) |
37 |
|
simpr |
|- ( ( ph /\ a e. A ) -> a e. A ) |
38 |
19 3
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
39 |
29 38
|
syl |
|- ( R e. Domn -> ( 1r ` R ) =/= .0. ) |
40 |
5 39
|
syl |
|- ( ph -> ( 1r ` R ) =/= .0. ) |
41 |
40
|
adantr |
|- ( ( ph /\ a e. A ) -> ( 1r ` R ) =/= .0. ) |
42 |
1 19 3
|
abv1z |
|- ( ( a e. A /\ ( 1r ` R ) =/= .0. ) -> ( a ` ( 1r ` R ) ) = 1 ) |
43 |
37 41 42
|
syl2anc |
|- ( ( ph /\ a e. A ) -> ( a ` ( 1r ` R ) ) = 1 ) |
44 |
43
|
ad3antrrr |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( a ` ( 1r ` R ) ) = 1 ) |
45 |
28 36 44
|
3eqtr3d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( ( a ` b ) ^ n ) = 1 ) |
46 |
1 2
|
abvcl |
|- ( ( a e. A /\ b e. B ) -> ( a ` b ) e. RR ) |
47 |
32 33 46
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( a ` b ) e. RR ) |
48 |
1 2
|
abvge0 |
|- ( ( a e. A /\ b e. B ) -> 0 <_ ( a ` b ) ) |
49 |
32 33 48
|
syl2anc |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> 0 <_ ( a ` b ) ) |
50 |
47 34 49
|
expeq1d |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( ( ( a ` b ) ^ n ) = 1 <-> ( a ` b ) = 1 ) ) |
51 |
45 50
|
mpbid |
|- ( ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) /\ ( n e. NN /\ ( n ( .g ` ( mulGrp ` R ) ) b ) = ( 1r ` R ) ) ) -> ( a ` b ) = 1 ) |
52 |
26 51
|
rexlimddv |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> ( a ` b ) = 1 ) |
53 |
|
eqeq1 |
|- ( x = b -> ( x = .0. <-> b = .0. ) ) |
54 |
53
|
ifbid |
|- ( x = b -> if ( x = .0. , 0 , 1 ) = if ( b = .0. , 0 , 1 ) ) |
55 |
|
ifnefalse |
|- ( b =/= .0. -> if ( b = .0. , 0 , 1 ) = 1 ) |
56 |
55
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ b =/= .0. ) -> if ( b = .0. , 0 , 1 ) = 1 ) |
57 |
54 56
|
sylan9eqr |
|- ( ( ( ( ph /\ b e. B ) /\ b =/= .0. ) /\ x = b ) -> if ( x = .0. , 0 , 1 ) = 1 ) |
58 |
|
simplr |
|- ( ( ( ph /\ b e. B ) /\ b =/= .0. ) -> b e. B ) |
59 |
|
1cnd |
|- ( ( ( ph /\ b e. B ) /\ b =/= .0. ) -> 1 e. CC ) |
60 |
4 57 58 59
|
fvmptd2 |
|- ( ( ( ph /\ b e. B ) /\ b =/= .0. ) -> ( T ` b ) = 1 ) |
61 |
60
|
adantllr |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> ( T ` b ) = 1 ) |
62 |
52 61
|
eqtr4d |
|- ( ( ( ( ph /\ a e. A ) /\ b e. B ) /\ b =/= .0. ) -> ( a ` b ) = ( T ` b ) ) |
63 |
1 3
|
abv0 |
|- ( a e. A -> ( a ` .0. ) = 0 ) |
64 |
63
|
adantl |
|- ( ( ph /\ a e. A ) -> ( a ` .0. ) = 0 ) |
65 |
1 3
|
abv0 |
|- ( T e. A -> ( T ` .0. ) = 0 ) |
66 |
11 65
|
syl |
|- ( ph -> ( T ` .0. ) = 0 ) |
67 |
66
|
adantr |
|- ( ( ph /\ a e. A ) -> ( T ` .0. ) = 0 ) |
68 |
64 67
|
eqtr4d |
|- ( ( ph /\ a e. A ) -> ( a ` .0. ) = ( T ` .0. ) ) |
69 |
68
|
adantr |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( a ` .0. ) = ( T ` .0. ) ) |
70 |
18 62 69
|
pm2.61ne |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( a ` b ) = ( T ` b ) ) |
71 |
9 15 70
|
eqfnfvd |
|- ( ( ph /\ a e. A ) -> a = T ) |
72 |
71 11
|
eqsnd |
|- ( ph -> A = { T } ) |