| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvexp.a |
|- A = ( AbsVal ` R ) |
| 2 |
|
abvexp.e |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
| 3 |
|
abvexp.b |
|- B = ( Base ` R ) |
| 4 |
|
abvexp.r |
|- ( ph -> R e. NzRing ) |
| 5 |
|
abvexp.f |
|- ( ph -> F e. A ) |
| 6 |
|
abvexp.x |
|- ( ph -> X e. B ) |
| 7 |
|
abvexp.n |
|- ( ph -> N e. NN0 ) |
| 8 |
|
fvoveq1 |
|- ( x = 0 -> ( F ` ( x .^ X ) ) = ( F ` ( 0 .^ X ) ) ) |
| 9 |
|
oveq2 |
|- ( x = 0 -> ( ( F ` X ) ^ x ) = ( ( F ` X ) ^ 0 ) ) |
| 10 |
8 9
|
eqeq12d |
|- ( x = 0 -> ( ( F ` ( x .^ X ) ) = ( ( F ` X ) ^ x ) <-> ( F ` ( 0 .^ X ) ) = ( ( F ` X ) ^ 0 ) ) ) |
| 11 |
|
fvoveq1 |
|- ( x = y -> ( F ` ( x .^ X ) ) = ( F ` ( y .^ X ) ) ) |
| 12 |
|
oveq2 |
|- ( x = y -> ( ( F ` X ) ^ x ) = ( ( F ` X ) ^ y ) ) |
| 13 |
11 12
|
eqeq12d |
|- ( x = y -> ( ( F ` ( x .^ X ) ) = ( ( F ` X ) ^ x ) <-> ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) ) |
| 14 |
|
fvoveq1 |
|- ( x = ( y + 1 ) -> ( F ` ( x .^ X ) ) = ( F ` ( ( y + 1 ) .^ X ) ) ) |
| 15 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( ( F ` X ) ^ x ) = ( ( F ` X ) ^ ( y + 1 ) ) ) |
| 16 |
14 15
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( F ` ( x .^ X ) ) = ( ( F ` X ) ^ x ) <-> ( F ` ( ( y + 1 ) .^ X ) ) = ( ( F ` X ) ^ ( y + 1 ) ) ) ) |
| 17 |
|
fvoveq1 |
|- ( x = N -> ( F ` ( x .^ X ) ) = ( F ` ( N .^ X ) ) ) |
| 18 |
|
oveq2 |
|- ( x = N -> ( ( F ` X ) ^ x ) = ( ( F ` X ) ^ N ) ) |
| 19 |
17 18
|
eqeq12d |
|- ( x = N -> ( ( F ` ( x .^ X ) ) = ( ( F ` X ) ^ x ) <-> ( F ` ( N .^ X ) ) = ( ( F ` X ) ^ N ) ) ) |
| 20 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 21 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 22 |
20 21
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 23 |
4 22
|
syl |
|- ( ph -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 24 |
1 20 21
|
abv1z |
|- ( ( F e. A /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( F ` ( 1r ` R ) ) = 1 ) |
| 25 |
5 23 24
|
syl2anc |
|- ( ph -> ( F ` ( 1r ` R ) ) = 1 ) |
| 26 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 27 |
26 3
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 28 |
26 20
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 29 |
27 28 2
|
mulg0 |
|- ( X e. B -> ( 0 .^ X ) = ( 1r ` R ) ) |
| 30 |
6 29
|
syl |
|- ( ph -> ( 0 .^ X ) = ( 1r ` R ) ) |
| 31 |
30
|
fveq2d |
|- ( ph -> ( F ` ( 0 .^ X ) ) = ( F ` ( 1r ` R ) ) ) |
| 32 |
1 3
|
abvcl |
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
| 33 |
5 6 32
|
syl2anc |
|- ( ph -> ( F ` X ) e. RR ) |
| 34 |
33
|
recnd |
|- ( ph -> ( F ` X ) e. CC ) |
| 35 |
34
|
exp0d |
|- ( ph -> ( ( F ` X ) ^ 0 ) = 1 ) |
| 36 |
25 31 35
|
3eqtr4d |
|- ( ph -> ( F ` ( 0 .^ X ) ) = ( ( F ` X ) ^ 0 ) ) |
| 37 |
5
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> F e. A ) |
| 38 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 39 |
26
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 40 |
4 38 39
|
3syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 41 |
40
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> ( mulGrp ` R ) e. Mnd ) |
| 42 |
|
simplr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> y e. NN0 ) |
| 43 |
6
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> X e. B ) |
| 44 |
27 2 41 42 43
|
mulgnn0cld |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> ( y .^ X ) e. B ) |
| 45 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 46 |
1 3 45
|
abvmul |
|- ( ( F e. A /\ ( y .^ X ) e. B /\ X e. B ) -> ( F ` ( ( y .^ X ) ( .r ` R ) X ) ) = ( ( F ` ( y .^ X ) ) x. ( F ` X ) ) ) |
| 47 |
37 44 43 46
|
syl3anc |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> ( F ` ( ( y .^ X ) ( .r ` R ) X ) ) = ( ( F ` ( y .^ X ) ) x. ( F ` X ) ) ) |
| 48 |
|
simpr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) |
| 49 |
48
|
oveq1d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> ( ( F ` ( y .^ X ) ) x. ( F ` X ) ) = ( ( ( F ` X ) ^ y ) x. ( F ` X ) ) ) |
| 50 |
47 49
|
eqtrd |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> ( F ` ( ( y .^ X ) ( .r ` R ) X ) ) = ( ( ( F ` X ) ^ y ) x. ( F ` X ) ) ) |
| 51 |
26 45
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 52 |
27 2 51
|
mulgnn0p1 |
|- ( ( ( mulGrp ` R ) e. Mnd /\ y e. NN0 /\ X e. B ) -> ( ( y + 1 ) .^ X ) = ( ( y .^ X ) ( .r ` R ) X ) ) |
| 53 |
41 42 43 52
|
syl3anc |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> ( ( y + 1 ) .^ X ) = ( ( y .^ X ) ( .r ` R ) X ) ) |
| 54 |
53
|
fveq2d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> ( F ` ( ( y + 1 ) .^ X ) ) = ( F ` ( ( y .^ X ) ( .r ` R ) X ) ) ) |
| 55 |
34
|
ad2antrr |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> ( F ` X ) e. CC ) |
| 56 |
55 42
|
expp1d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> ( ( F ` X ) ^ ( y + 1 ) ) = ( ( ( F ` X ) ^ y ) x. ( F ` X ) ) ) |
| 57 |
50 54 56
|
3eqtr4d |
|- ( ( ( ph /\ y e. NN0 ) /\ ( F ` ( y .^ X ) ) = ( ( F ` X ) ^ y ) ) -> ( F ` ( ( y + 1 ) .^ X ) ) = ( ( F ` X ) ^ ( y + 1 ) ) ) |
| 58 |
10 13 16 19 36 57
|
nn0indd |
|- ( ( ph /\ N e. NN0 ) -> ( F ` ( N .^ X ) ) = ( ( F ` X ) ^ N ) ) |
| 59 |
7 58
|
mpdan |
|- ( ph -> ( F ` ( N .^ X ) ) = ( ( F ` X ) ^ N ) ) |