Step |
Hyp |
Ref |
Expression |
1 |
|
abvexp.a |
|
2 |
|
abvexp.e |
|
3 |
|
abvexp.b |
|
4 |
|
abvexp.r |
|
5 |
|
abvexp.f |
|
6 |
|
abvexp.x |
|
7 |
|
abvexp.n |
|
8 |
|
fvoveq1 |
|
9 |
|
oveq2 |
|
10 |
8 9
|
eqeq12d |
|
11 |
|
fvoveq1 |
|
12 |
|
oveq2 |
|
13 |
11 12
|
eqeq12d |
|
14 |
|
fvoveq1 |
|
15 |
|
oveq2 |
|
16 |
14 15
|
eqeq12d |
|
17 |
|
fvoveq1 |
|
18 |
|
oveq2 |
|
19 |
17 18
|
eqeq12d |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
20 21
|
nzrnz |
|
23 |
4 22
|
syl |
|
24 |
1 20 21
|
abv1z |
|
25 |
5 23 24
|
syl2anc |
|
26 |
|
eqid |
|
27 |
26 3
|
mgpbas |
|
28 |
26 20
|
ringidval |
|
29 |
27 28 2
|
mulg0 |
|
30 |
6 29
|
syl |
|
31 |
30
|
fveq2d |
|
32 |
1 3
|
abvcl |
|
33 |
5 6 32
|
syl2anc |
|
34 |
33
|
recnd |
|
35 |
34
|
exp0d |
|
36 |
25 31 35
|
3eqtr4d |
|
37 |
5
|
ad2antrr |
|
38 |
|
nzrring |
|
39 |
26
|
ringmgp |
|
40 |
4 38 39
|
3syl |
|
41 |
40
|
ad2antrr |
|
42 |
|
simplr |
|
43 |
6
|
ad2antrr |
|
44 |
27 2 41 42 43
|
mulgnn0cld |
|
45 |
|
eqid |
|
46 |
1 3 45
|
abvmul |
|
47 |
37 44 43 46
|
syl3anc |
|
48 |
|
simpr |
|
49 |
48
|
oveq1d |
|
50 |
47 49
|
eqtrd |
|
51 |
26 45
|
mgpplusg |
|
52 |
27 2 51
|
mulgnn0p1 |
|
53 |
41 42 43 52
|
syl3anc |
|
54 |
53
|
fveq2d |
|
55 |
34
|
ad2antrr |
|
56 |
55 42
|
expp1d |
|
57 |
50 54 56
|
3eqtr4d |
|
58 |
10 13 16 19 36 57
|
nn0indd |
|
59 |
7 58
|
mpdan |
|