| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvexp.a |
|
| 2 |
|
abvexp.e |
|
| 3 |
|
abvexp.b |
|
| 4 |
|
abvexp.r |
|
| 5 |
|
abvexp.f |
|
| 6 |
|
abvexp.x |
|
| 7 |
|
abvexp.n |
|
| 8 |
|
fvoveq1 |
|
| 9 |
|
oveq2 |
|
| 10 |
8 9
|
eqeq12d |
|
| 11 |
|
fvoveq1 |
|
| 12 |
|
oveq2 |
|
| 13 |
11 12
|
eqeq12d |
|
| 14 |
|
fvoveq1 |
|
| 15 |
|
oveq2 |
|
| 16 |
14 15
|
eqeq12d |
|
| 17 |
|
fvoveq1 |
|
| 18 |
|
oveq2 |
|
| 19 |
17 18
|
eqeq12d |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
20 21
|
nzrnz |
|
| 23 |
4 22
|
syl |
|
| 24 |
1 20 21
|
abv1z |
|
| 25 |
5 23 24
|
syl2anc |
|
| 26 |
|
eqid |
|
| 27 |
26 3
|
mgpbas |
|
| 28 |
26 20
|
ringidval |
|
| 29 |
27 28 2
|
mulg0 |
|
| 30 |
6 29
|
syl |
|
| 31 |
30
|
fveq2d |
|
| 32 |
1 3
|
abvcl |
|
| 33 |
5 6 32
|
syl2anc |
|
| 34 |
33
|
recnd |
|
| 35 |
34
|
exp0d |
|
| 36 |
25 31 35
|
3eqtr4d |
|
| 37 |
5
|
ad2antrr |
|
| 38 |
|
nzrring |
|
| 39 |
26
|
ringmgp |
|
| 40 |
4 38 39
|
3syl |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
|
simplr |
|
| 43 |
6
|
ad2antrr |
|
| 44 |
27 2 41 42 43
|
mulgnn0cld |
|
| 45 |
|
eqid |
|
| 46 |
1 3 45
|
abvmul |
|
| 47 |
37 44 43 46
|
syl3anc |
|
| 48 |
|
simpr |
|
| 49 |
48
|
oveq1d |
|
| 50 |
47 49
|
eqtrd |
|
| 51 |
26 45
|
mgpplusg |
|
| 52 |
27 2 51
|
mulgnn0p1 |
|
| 53 |
41 42 43 52
|
syl3anc |
|
| 54 |
53
|
fveq2d |
|
| 55 |
34
|
ad2antrr |
|
| 56 |
55 42
|
expp1d |
|
| 57 |
50 54 56
|
3eqtr4d |
|
| 58 |
10 13 16 19 36 57
|
nn0indd |
|
| 59 |
7 58
|
mpdan |
|