| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fiabv.a |
|
| 2 |
|
fiabv.b |
|
| 3 |
|
fiabv.0 |
|
| 4 |
|
fiabv.t |
|
| 5 |
|
fiabv.r |
|
| 6 |
|
fiabv.f |
|
| 7 |
1 2
|
abvf |
|
| 8 |
7
|
ffnd |
|
| 9 |
8
|
adantl |
|
| 10 |
1 2 3 4
|
abvtrivg |
|
| 11 |
5 10
|
syl |
|
| 12 |
1 2
|
abvf |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
ffnd |
|
| 15 |
14
|
adantr |
|
| 16 |
|
fveq2 |
|
| 17 |
|
fveq2 |
|
| 18 |
16 17
|
eqeq12d |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
5
|
ad3antrrr |
|
| 22 |
6
|
ad3antrrr |
|
| 23 |
|
eldifsn |
|
| 24 |
23
|
biimpri |
|
| 25 |
24
|
adantll |
|
| 26 |
2 3 19 20 21 22 25
|
fidomncyc |
|
| 27 |
|
simprr |
|
| 28 |
27
|
fveq2d |
|
| 29 |
|
domnnzr |
|
| 30 |
5 29
|
syl |
|
| 31 |
30
|
ad4antr |
|
| 32 |
|
simp-4r |
|
| 33 |
|
simpllr |
|
| 34 |
|
simprl |
|
| 35 |
34
|
nnnn0d |
|
| 36 |
1 20 2 31 32 33 35
|
abvexp |
|
| 37 |
|
simpr |
|
| 38 |
19 3
|
nzrnz |
|
| 39 |
29 38
|
syl |
|
| 40 |
5 39
|
syl |
|
| 41 |
40
|
adantr |
|
| 42 |
1 19 3
|
abv1z |
|
| 43 |
37 41 42
|
syl2anc |
|
| 44 |
43
|
ad3antrrr |
|
| 45 |
28 36 44
|
3eqtr3d |
|
| 46 |
1 2
|
abvcl |
|
| 47 |
32 33 46
|
syl2anc |
|
| 48 |
1 2
|
abvge0 |
|
| 49 |
32 33 48
|
syl2anc |
|
| 50 |
47 34 49
|
expeq1d |
|
| 51 |
45 50
|
mpbid |
|
| 52 |
26 51
|
rexlimddv |
|
| 53 |
|
eqeq1 |
|
| 54 |
53
|
ifbid |
|
| 55 |
|
ifnefalse |
|
| 56 |
55
|
adantl |
|
| 57 |
54 56
|
sylan9eqr |
|
| 58 |
|
simplr |
|
| 59 |
|
1cnd |
|
| 60 |
4 57 58 59
|
fvmptd2 |
|
| 61 |
60
|
adantllr |
|
| 62 |
52 61
|
eqtr4d |
|
| 63 |
1 3
|
abv0 |
|
| 64 |
63
|
adantl |
|
| 65 |
1 3
|
abv0 |
|
| 66 |
11 65
|
syl |
|
| 67 |
66
|
adantr |
|
| 68 |
64 67
|
eqtr4d |
|
| 69 |
68
|
adantr |
|
| 70 |
18 62 69
|
pm2.61ne |
|
| 71 |
9 15 70
|
eqfnfvd |
|
| 72 |
71 11
|
eqsnd |
|