Metamath Proof Explorer


Theorem fiabv

Description: In a finite domain (a finite field), the only absolute value is the trivial one ( abvtrivg ). (Contributed by SN, 3-Jul-2025)

Ref Expression
Hypotheses fiabv.a A = AbsVal R
fiabv.b B = Base R
fiabv.0 0 ˙ = 0 R
fiabv.t T = x B if x = 0 ˙ 0 1
fiabv.r φ R Domn
fiabv.f φ B Fin
Assertion fiabv φ A = T

Proof

Step Hyp Ref Expression
1 fiabv.a A = AbsVal R
2 fiabv.b B = Base R
3 fiabv.0 0 ˙ = 0 R
4 fiabv.t T = x B if x = 0 ˙ 0 1
5 fiabv.r φ R Domn
6 fiabv.f φ B Fin
7 1 2 abvf a A a : B
8 7 ffnd a A a Fn B
9 8 adantl φ a A a Fn B
10 1 2 3 4 abvtrivg R Domn T A
11 5 10 syl φ T A
12 1 2 abvf T A T : B
13 11 12 syl φ T : B
14 13 ffnd φ T Fn B
15 14 adantr φ a A T Fn B
16 fveq2 b = 0 ˙ a b = a 0 ˙
17 fveq2 b = 0 ˙ T b = T 0 ˙
18 16 17 eqeq12d b = 0 ˙ a b = T b a 0 ˙ = T 0 ˙
19 eqid 1 R = 1 R
20 eqid mulGrp R = mulGrp R
21 5 ad3antrrr φ a A b B b 0 ˙ R Domn
22 6 ad3antrrr φ a A b B b 0 ˙ B Fin
23 eldifsn b B 0 ˙ b B b 0 ˙
24 23 biimpri b B b 0 ˙ b B 0 ˙
25 24 adantll φ a A b B b 0 ˙ b B 0 ˙
26 2 3 19 20 21 22 25 fidomncyc φ a A b B b 0 ˙ n n mulGrp R b = 1 R
27 simprr φ a A b B b 0 ˙ n n mulGrp R b = 1 R n mulGrp R b = 1 R
28 27 fveq2d φ a A b B b 0 ˙ n n mulGrp R b = 1 R a n mulGrp R b = a 1 R
29 domnnzr R Domn R NzRing
30 5 29 syl φ R NzRing
31 30 ad4antr φ a A b B b 0 ˙ n n mulGrp R b = 1 R R NzRing
32 simp-4r φ a A b B b 0 ˙ n n mulGrp R b = 1 R a A
33 simpllr φ a A b B b 0 ˙ n n mulGrp R b = 1 R b B
34 simprl φ a A b B b 0 ˙ n n mulGrp R b = 1 R n
35 34 nnnn0d φ a A b B b 0 ˙ n n mulGrp R b = 1 R n 0
36 1 20 2 31 32 33 35 abvexp φ a A b B b 0 ˙ n n mulGrp R b = 1 R a n mulGrp R b = a b n
37 simpr φ a A a A
38 19 3 nzrnz R NzRing 1 R 0 ˙
39 29 38 syl R Domn 1 R 0 ˙
40 5 39 syl φ 1 R 0 ˙
41 40 adantr φ a A 1 R 0 ˙
42 1 19 3 abv1z a A 1 R 0 ˙ a 1 R = 1
43 37 41 42 syl2anc φ a A a 1 R = 1
44 43 ad3antrrr φ a A b B b 0 ˙ n n mulGrp R b = 1 R a 1 R = 1
45 28 36 44 3eqtr3d φ a A b B b 0 ˙ n n mulGrp R b = 1 R a b n = 1
46 1 2 abvcl a A b B a b
47 32 33 46 syl2anc φ a A b B b 0 ˙ n n mulGrp R b = 1 R a b
48 1 2 abvge0 a A b B 0 a b
49 32 33 48 syl2anc φ a A b B b 0 ˙ n n mulGrp R b = 1 R 0 a b
50 47 34 49 expeq1d φ a A b B b 0 ˙ n n mulGrp R b = 1 R a b n = 1 a b = 1
51 45 50 mpbid φ a A b B b 0 ˙ n n mulGrp R b = 1 R a b = 1
52 26 51 rexlimddv φ a A b B b 0 ˙ a b = 1
53 eqeq1 x = b x = 0 ˙ b = 0 ˙
54 53 ifbid x = b if x = 0 ˙ 0 1 = if b = 0 ˙ 0 1
55 ifnefalse b 0 ˙ if b = 0 ˙ 0 1 = 1
56 55 adantl φ b B b 0 ˙ if b = 0 ˙ 0 1 = 1
57 54 56 sylan9eqr φ b B b 0 ˙ x = b if x = 0 ˙ 0 1 = 1
58 simplr φ b B b 0 ˙ b B
59 1cnd φ b B b 0 ˙ 1
60 4 57 58 59 fvmptd2 φ b B b 0 ˙ T b = 1
61 60 adantllr φ a A b B b 0 ˙ T b = 1
62 52 61 eqtr4d φ a A b B b 0 ˙ a b = T b
63 1 3 abv0 a A a 0 ˙ = 0
64 63 adantl φ a A a 0 ˙ = 0
65 1 3 abv0 T A T 0 ˙ = 0
66 11 65 syl φ T 0 ˙ = 0
67 66 adantr φ a A T 0 ˙ = 0
68 64 67 eqtr4d φ a A a 0 ˙ = T 0 ˙
69 68 adantr φ a A b B a 0 ˙ = T 0 ˙
70 18 62 69 pm2.61ne φ a A b B a b = T b
71 9 15 70 eqfnfvd φ a A a = T
72 71 11 eqsnd φ A = T