| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fidomncyc.b |
|
| 2 |
|
fidomncyc.0 |
|
| 3 |
|
fidomncyc.1 |
|
| 4 |
|
fidomncyc.e |
|
| 5 |
|
fidomncyc.r |
|
| 6 |
|
fidomncyc.f |
|
| 7 |
|
fidomncyc.a |
|
| 8 |
|
eqid |
|
| 9 |
8 1
|
mgpbas |
|
| 10 |
|
domnring |
|
| 11 |
5 10
|
syl |
|
| 12 |
8
|
ringmgp |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
mndmgm |
|
| 15 |
13 14
|
syl |
|
| 16 |
7
|
eldifad |
|
| 17 |
9 4 15 6 16
|
fimgmcyc |
|
| 18 |
|
simplrr |
|
| 19 |
|
eqid |
|
| 20 |
5
|
adantr |
|
| 21 |
|
nnnn0 |
|
| 22 |
21
|
ad2antrl |
|
| 23 |
7
|
adantr |
|
| 24 |
1 2 4 20 22 23
|
domnexpgn0cl |
|
| 25 |
24
|
adantr |
|
| 26 |
15
|
adantr |
|
| 27 |
|
simprr |
|
| 28 |
16
|
adantr |
|
| 29 |
9 4
|
mulgnncl |
|
| 30 |
26 27 28 29
|
syl3anc |
|
| 31 |
30
|
adantr |
|
| 32 |
1 3
|
ringidcl |
|
| 33 |
11 32
|
syl |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
5
|
ad2antrr |
|
| 36 |
11
|
adantr |
|
| 37 |
24
|
eldifad |
|
| 38 |
1 19 3 36 37
|
ringridmd |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simpr |
|
| 41 |
|
mndsgrp |
|
| 42 |
13 41
|
syl |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
|
simplrl |
|
| 45 |
28
|
adantr |
|
| 46 |
8 19
|
mgpplusg |
|
| 47 |
9 4 46
|
mulgnndir |
|
| 48 |
43 44 18 45 47
|
syl13anc |
|
| 49 |
39 40 48
|
3eqtrrd |
|
| 50 |
1 2 19 25 31 34 35 49
|
domnlcan |
|
| 51 |
|
oveq1 |
|
| 52 |
51
|
eqeq1d |
|
| 53 |
52
|
rspcev |
|
| 54 |
18 50 53
|
syl2anc |
|
| 55 |
54
|
ex |
|
| 56 |
55
|
rexlimdvva |
|
| 57 |
17 56
|
mpd |
|