Metamath Proof Explorer


Theorem fidomncyc

Description: Version of odcl2 for multiplicative groups of finite domains (that is, a finite monoid where nonzero elements are cancellable): one ( .1. ) is a multiple of any nonzero element. (Contributed by SN, 3-Jul-2025)

Ref Expression
Hypotheses fidomncyc.b B = Base R
fidomncyc.0 0 ˙ = 0 R
fidomncyc.1 1 ˙ = 1 R
fidomncyc.e × ˙ = mulGrp R
fidomncyc.r φ R Domn
fidomncyc.f φ B Fin
fidomncyc.a φ A B 0 ˙
Assertion fidomncyc φ n n × ˙ A = 1 ˙

Proof

Step Hyp Ref Expression
1 fidomncyc.b B = Base R
2 fidomncyc.0 0 ˙ = 0 R
3 fidomncyc.1 1 ˙ = 1 R
4 fidomncyc.e × ˙ = mulGrp R
5 fidomncyc.r φ R Domn
6 fidomncyc.f φ B Fin
7 fidomncyc.a φ A B 0 ˙
8 eqid mulGrp R = mulGrp R
9 8 1 mgpbas B = Base mulGrp R
10 domnring R Domn R Ring
11 5 10 syl φ R Ring
12 8 ringmgp R Ring mulGrp R Mnd
13 11 12 syl φ mulGrp R Mnd
14 mndmgm mulGrp R Mnd mulGrp R Mgm
15 13 14 syl φ mulGrp R Mgm
16 7 eldifad φ A B
17 9 4 15 6 16 fimgmcyc φ o p o × ˙ A = o + p × ˙ A
18 simplrr φ o p o × ˙ A = o + p × ˙ A p
19 eqid R = R
20 5 adantr φ o p R Domn
21 nnnn0 o o 0
22 21 ad2antrl φ o p o 0
23 7 adantr φ o p A B 0 ˙
24 1 2 4 20 22 23 domnexpgn0cl φ o p o × ˙ A B 0 ˙
25 24 adantr φ o p o × ˙ A = o + p × ˙ A o × ˙ A B 0 ˙
26 15 adantr φ o p mulGrp R Mgm
27 simprr φ o p p
28 16 adantr φ o p A B
29 9 4 mulgnncl mulGrp R Mgm p A B p × ˙ A B
30 26 27 28 29 syl3anc φ o p p × ˙ A B
31 30 adantr φ o p o × ˙ A = o + p × ˙ A p × ˙ A B
32 1 3 ringidcl R Ring 1 ˙ B
33 11 32 syl φ 1 ˙ B
34 33 ad2antrr φ o p o × ˙ A = o + p × ˙ A 1 ˙ B
35 5 ad2antrr φ o p o × ˙ A = o + p × ˙ A R Domn
36 11 adantr φ o p R Ring
37 24 eldifad φ o p o × ˙ A B
38 1 19 3 36 37 ringridmd φ o p o × ˙ A R 1 ˙ = o × ˙ A
39 38 adantr φ o p o × ˙ A = o + p × ˙ A o × ˙ A R 1 ˙ = o × ˙ A
40 simpr φ o p o × ˙ A = o + p × ˙ A o × ˙ A = o + p × ˙ A
41 mndsgrp mulGrp R Mnd mulGrp R Smgrp
42 13 41 syl φ mulGrp R Smgrp
43 42 ad2antrr φ o p o × ˙ A = o + p × ˙ A mulGrp R Smgrp
44 simplrl φ o p o × ˙ A = o + p × ˙ A o
45 28 adantr φ o p o × ˙ A = o + p × ˙ A A B
46 8 19 mgpplusg R = + mulGrp R
47 9 4 46 mulgnndir mulGrp R Smgrp o p A B o + p × ˙ A = o × ˙ A R p × ˙ A
48 43 44 18 45 47 syl13anc φ o p o × ˙ A = o + p × ˙ A o + p × ˙ A = o × ˙ A R p × ˙ A
49 39 40 48 3eqtrrd φ o p o × ˙ A = o + p × ˙ A o × ˙ A R p × ˙ A = o × ˙ A R 1 ˙
50 1 2 19 25 31 34 35 49 domnlcan φ o p o × ˙ A = o + p × ˙ A p × ˙ A = 1 ˙
51 oveq1 n = p n × ˙ A = p × ˙ A
52 51 eqeq1d n = p n × ˙ A = 1 ˙ p × ˙ A = 1 ˙
53 52 rspcev p p × ˙ A = 1 ˙ n n × ˙ A = 1 ˙
54 18 50 53 syl2anc φ o p o × ˙ A = o + p × ˙ A n n × ˙ A = 1 ˙
55 54 ex φ o p o × ˙ A = o + p × ˙ A n n × ˙ A = 1 ˙
56 55 rexlimdvva φ o p o × ˙ A = o + p × ˙ A n n × ˙ A = 1 ˙
57 17 56 mpd φ n n × ˙ A = 1 ˙