Step |
Hyp |
Ref |
Expression |
1 |
|
fidomncyc.b |
|
2 |
|
fidomncyc.0 |
|
3 |
|
fidomncyc.1 |
|
4 |
|
fidomncyc.e |
|
5 |
|
fidomncyc.r |
|
6 |
|
fidomncyc.f |
|
7 |
|
fidomncyc.a |
|
8 |
|
eqid |
|
9 |
8 1
|
mgpbas |
|
10 |
|
domnring |
|
11 |
5 10
|
syl |
|
12 |
8
|
ringmgp |
|
13 |
11 12
|
syl |
|
14 |
|
mndmgm |
|
15 |
13 14
|
syl |
|
16 |
7
|
eldifad |
|
17 |
9 4 15 6 16
|
fimgmcyc |
|
18 |
|
simplrr |
|
19 |
|
eqid |
|
20 |
5
|
adantr |
|
21 |
|
nnnn0 |
|
22 |
21
|
ad2antrl |
|
23 |
7
|
adantr |
|
24 |
1 2 4 20 22 23
|
domnexpgn0cl |
|
25 |
24
|
adantr |
|
26 |
15
|
adantr |
|
27 |
|
simprr |
|
28 |
16
|
adantr |
|
29 |
9 4
|
mulgnncl |
|
30 |
26 27 28 29
|
syl3anc |
|
31 |
30
|
adantr |
|
32 |
1 3
|
ringidcl |
|
33 |
11 32
|
syl |
|
34 |
33
|
ad2antrr |
|
35 |
5
|
ad2antrr |
|
36 |
11
|
adantr |
|
37 |
24
|
eldifad |
|
38 |
1 19 3 36 37
|
ringridmd |
|
39 |
38
|
adantr |
|
40 |
|
simpr |
|
41 |
|
mndsgrp |
|
42 |
13 41
|
syl |
|
43 |
42
|
ad2antrr |
|
44 |
|
simplrl |
|
45 |
28
|
adantr |
|
46 |
8 19
|
mgpplusg |
|
47 |
9 4 46
|
mulgnndir |
|
48 |
43 44 18 45 47
|
syl13anc |
|
49 |
39 40 48
|
3eqtrrd |
|
50 |
1 2 19 25 31 34 35 49
|
domnlcan |
|
51 |
|
oveq1 |
|
52 |
51
|
eqeq1d |
|
53 |
52
|
rspcev |
|
54 |
18 50 53
|
syl2anc |
|
55 |
54
|
ex |
|
56 |
55
|
rexlimdvva |
|
57 |
17 56
|
mpd |
|