| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fidomncyc.b |
|- B = ( Base ` R ) |
| 2 |
|
fidomncyc.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
fidomncyc.1 |
|- .1. = ( 1r ` R ) |
| 4 |
|
fidomncyc.e |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
| 5 |
|
fidomncyc.r |
|- ( ph -> R e. Domn ) |
| 6 |
|
fidomncyc.f |
|- ( ph -> B e. Fin ) |
| 7 |
|
fidomncyc.a |
|- ( ph -> A e. ( B \ { .0. } ) ) |
| 8 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 9 |
8 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 10 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
| 11 |
5 10
|
syl |
|- ( ph -> R e. Ring ) |
| 12 |
8
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 13 |
11 12
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 14 |
|
mndmgm |
|- ( ( mulGrp ` R ) e. Mnd -> ( mulGrp ` R ) e. Mgm ) |
| 15 |
13 14
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mgm ) |
| 16 |
7
|
eldifad |
|- ( ph -> A e. B ) |
| 17 |
9 4 15 6 16
|
fimgmcyc |
|- ( ph -> E. o e. NN E. p e. NN ( o .^ A ) = ( ( o + p ) .^ A ) ) |
| 18 |
|
simplrr |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> p e. NN ) |
| 19 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 20 |
5
|
adantr |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> R e. Domn ) |
| 21 |
|
nnnn0 |
|- ( o e. NN -> o e. NN0 ) |
| 22 |
21
|
ad2antrl |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> o e. NN0 ) |
| 23 |
7
|
adantr |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> A e. ( B \ { .0. } ) ) |
| 24 |
1 2 4 20 22 23
|
domnexpgn0cl |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> ( o .^ A ) e. ( B \ { .0. } ) ) |
| 25 |
24
|
adantr |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> ( o .^ A ) e. ( B \ { .0. } ) ) |
| 26 |
15
|
adantr |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> ( mulGrp ` R ) e. Mgm ) |
| 27 |
|
simprr |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> p e. NN ) |
| 28 |
16
|
adantr |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> A e. B ) |
| 29 |
9 4
|
mulgnncl |
|- ( ( ( mulGrp ` R ) e. Mgm /\ p e. NN /\ A e. B ) -> ( p .^ A ) e. B ) |
| 30 |
26 27 28 29
|
syl3anc |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> ( p .^ A ) e. B ) |
| 31 |
30
|
adantr |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> ( p .^ A ) e. B ) |
| 32 |
1 3
|
ringidcl |
|- ( R e. Ring -> .1. e. B ) |
| 33 |
11 32
|
syl |
|- ( ph -> .1. e. B ) |
| 34 |
33
|
ad2antrr |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> .1. e. B ) |
| 35 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> R e. Domn ) |
| 36 |
11
|
adantr |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> R e. Ring ) |
| 37 |
24
|
eldifad |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> ( o .^ A ) e. B ) |
| 38 |
1 19 3 36 37
|
ringridmd |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> ( ( o .^ A ) ( .r ` R ) .1. ) = ( o .^ A ) ) |
| 39 |
38
|
adantr |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> ( ( o .^ A ) ( .r ` R ) .1. ) = ( o .^ A ) ) |
| 40 |
|
simpr |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> ( o .^ A ) = ( ( o + p ) .^ A ) ) |
| 41 |
|
mndsgrp |
|- ( ( mulGrp ` R ) e. Mnd -> ( mulGrp ` R ) e. Smgrp ) |
| 42 |
13 41
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Smgrp ) |
| 43 |
42
|
ad2antrr |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> ( mulGrp ` R ) e. Smgrp ) |
| 44 |
|
simplrl |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> o e. NN ) |
| 45 |
28
|
adantr |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> A e. B ) |
| 46 |
8 19
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 47 |
9 4 46
|
mulgnndir |
|- ( ( ( mulGrp ` R ) e. Smgrp /\ ( o e. NN /\ p e. NN /\ A e. B ) ) -> ( ( o + p ) .^ A ) = ( ( o .^ A ) ( .r ` R ) ( p .^ A ) ) ) |
| 48 |
43 44 18 45 47
|
syl13anc |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> ( ( o + p ) .^ A ) = ( ( o .^ A ) ( .r ` R ) ( p .^ A ) ) ) |
| 49 |
39 40 48
|
3eqtrrd |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> ( ( o .^ A ) ( .r ` R ) ( p .^ A ) ) = ( ( o .^ A ) ( .r ` R ) .1. ) ) |
| 50 |
1 2 19 25 31 34 35 49
|
domnlcan |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> ( p .^ A ) = .1. ) |
| 51 |
|
oveq1 |
|- ( n = p -> ( n .^ A ) = ( p .^ A ) ) |
| 52 |
51
|
eqeq1d |
|- ( n = p -> ( ( n .^ A ) = .1. <-> ( p .^ A ) = .1. ) ) |
| 53 |
52
|
rspcev |
|- ( ( p e. NN /\ ( p .^ A ) = .1. ) -> E. n e. NN ( n .^ A ) = .1. ) |
| 54 |
18 50 53
|
syl2anc |
|- ( ( ( ph /\ ( o e. NN /\ p e. NN ) ) /\ ( o .^ A ) = ( ( o + p ) .^ A ) ) -> E. n e. NN ( n .^ A ) = .1. ) |
| 55 |
54
|
ex |
|- ( ( ph /\ ( o e. NN /\ p e. NN ) ) -> ( ( o .^ A ) = ( ( o + p ) .^ A ) -> E. n e. NN ( n .^ A ) = .1. ) ) |
| 56 |
55
|
rexlimdvva |
|- ( ph -> ( E. o e. NN E. p e. NN ( o .^ A ) = ( ( o + p ) .^ A ) -> E. n e. NN ( n .^ A ) = .1. ) ) |
| 57 |
17 56
|
mpd |
|- ( ph -> E. n e. NN ( n .^ A ) = .1. ) |