| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expeq1d.a |
|
| 2 |
|
expeq1d.n |
|
| 3 |
|
expeq1d.0 |
|
| 4 |
2
|
nnzd |
|
| 5 |
|
1exp |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
eqeq2d |
|
| 8 |
1
|
adantr |
|
| 9 |
3
|
adantr |
|
| 10 |
|
0ne1 |
|
| 11 |
10
|
a1i |
|
| 12 |
2
|
0expd |
|
| 13 |
11 12 6
|
3netr4d |
|
| 14 |
13
|
adantr |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
16
|
biimpac |
|
| 18 |
17
|
adantll |
|
| 19 |
14 18
|
mteqand |
|
| 20 |
8 9 19
|
ne0gt0d |
|
| 21 |
8 20
|
elrpd |
|
| 22 |
|
1rp |
|
| 23 |
22
|
a1i |
|
| 24 |
2
|
adantr |
|
| 25 |
|
simpr |
|
| 26 |
21 23 24 25
|
exp11nnd |
|
| 27 |
26
|
ex |
|
| 28 |
7 27
|
sylbird |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
6 30
|
syl5ibrcom |
|
| 32 |
28 31
|
impbid |
|