Step |
Hyp |
Ref |
Expression |
1 |
|
expeq1d.a |
|
2 |
|
expeq1d.n |
|
3 |
|
expeq1d.0 |
|
4 |
2
|
nnzd |
|
5 |
|
1exp |
|
6 |
4 5
|
syl |
|
7 |
6
|
eqeq2d |
|
8 |
1
|
adantr |
|
9 |
3
|
adantr |
|
10 |
|
0ne1 |
|
11 |
10
|
a1i |
|
12 |
2
|
0expd |
|
13 |
11 12 6
|
3netr4d |
|
14 |
13
|
adantr |
|
15 |
|
oveq1 |
|
16 |
15
|
eqeq1d |
|
17 |
16
|
biimpac |
|
18 |
17
|
adantll |
|
19 |
14 18
|
mteqand |
|
20 |
8 9 19
|
ne0gt0d |
|
21 |
8 20
|
elrpd |
|
22 |
|
1rp |
|
23 |
22
|
a1i |
|
24 |
2
|
adantr |
|
25 |
|
simpr |
|
26 |
21 23 24 25
|
exp11nnd |
|
27 |
26
|
ex |
|
28 |
7 27
|
sylbird |
|
29 |
|
oveq1 |
|
30 |
29
|
eqeq1d |
|
31 |
6 30
|
syl5ibrcom |
|
32 |
28 31
|
impbid |
|