Metamath Proof Explorer


Theorem expeq1d

Description: A nonnegative real number is one if and only if it is one when raised to a positive integer. (Contributed by SN, 3-Jul-2025)

Ref Expression
Hypotheses expeq1d.a φ A
expeq1d.n φ N
expeq1d.0 φ 0 A
Assertion expeq1d φ A N = 1 A = 1

Proof

Step Hyp Ref Expression
1 expeq1d.a φ A
2 expeq1d.n φ N
3 expeq1d.0 φ 0 A
4 2 nnzd φ N
5 1exp N 1 N = 1
6 4 5 syl φ 1 N = 1
7 6 eqeq2d φ A N = 1 N A N = 1
8 1 adantr φ A N = 1 N A
9 3 adantr φ A N = 1 N 0 A
10 0ne1 0 1
11 10 a1i φ 0 1
12 2 0expd φ 0 N = 0
13 11 12 6 3netr4d φ 0 N 1 N
14 13 adantr φ A N = 1 N 0 N 1 N
15 oveq1 A = 0 A N = 0 N
16 15 eqeq1d A = 0 A N = 1 N 0 N = 1 N
17 16 biimpac A N = 1 N A = 0 0 N = 1 N
18 17 adantll φ A N = 1 N A = 0 0 N = 1 N
19 14 18 mteqand φ A N = 1 N A 0
20 8 9 19 ne0gt0d φ A N = 1 N 0 < A
21 8 20 elrpd φ A N = 1 N A +
22 1rp 1 +
23 22 a1i φ A N = 1 N 1 +
24 2 adantr φ A N = 1 N N
25 simpr φ A N = 1 N A N = 1 N
26 21 23 24 25 exp11nnd φ A N = 1 N A = 1
27 26 ex φ A N = 1 N A = 1
28 7 27 sylbird φ A N = 1 A = 1
29 oveq1 A = 1 A N = 1 N
30 29 eqeq1d A = 1 A N = 1 1 N = 1
31 6 30 syl5ibrcom φ A = 1 A N = 1
32 28 31 impbid φ A N = 1 A = 1