Step |
Hyp |
Ref |
Expression |
1 |
|
expeq1d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
expeq1d.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
expeq1d.0 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
4 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
5 |
|
1exp |
⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ( 1 ↑ 𝑁 ) = 1 ) |
7 |
6
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ↔ ( 𝐴 ↑ 𝑁 ) = 1 ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) → 𝐴 ∈ ℝ ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) → 0 ≤ 𝐴 ) |
10 |
|
0ne1 |
⊢ 0 ≠ 1 |
11 |
10
|
a1i |
⊢ ( 𝜑 → 0 ≠ 1 ) |
12 |
2
|
0expd |
⊢ ( 𝜑 → ( 0 ↑ 𝑁 ) = 0 ) |
13 |
11 12 6
|
3netr4d |
⊢ ( 𝜑 → ( 0 ↑ 𝑁 ) ≠ ( 1 ↑ 𝑁 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) → ( 0 ↑ 𝑁 ) ≠ ( 1 ↑ 𝑁 ) ) |
15 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ↔ ( 0 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) ) |
17 |
16
|
biimpac |
⊢ ( ( ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ∧ 𝐴 = 0 ) → ( 0 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
18 |
17
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) ∧ 𝐴 = 0 ) → ( 0 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
19 |
14 18
|
mteqand |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) → 𝐴 ≠ 0 ) |
20 |
8 9 19
|
ne0gt0d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) → 0 < 𝐴 ) |
21 |
8 20
|
elrpd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) → 𝐴 ∈ ℝ+ ) |
22 |
|
1rp |
⊢ 1 ∈ ℝ+ |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) → 1 ∈ ℝ+ ) |
24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) → 𝑁 ∈ ℕ ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) → ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
26 |
21 23 24 25
|
exp11nnd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) → 𝐴 = 1 ) |
27 |
26
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) → 𝐴 = 1 ) ) |
28 |
7 27
|
sylbird |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) = 1 → 𝐴 = 1 ) ) |
29 |
|
oveq1 |
⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
30 |
29
|
eqeq1d |
⊢ ( 𝐴 = 1 → ( ( 𝐴 ↑ 𝑁 ) = 1 ↔ ( 1 ↑ 𝑁 ) = 1 ) ) |
31 |
6 30
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐴 = 1 → ( 𝐴 ↑ 𝑁 ) = 1 ) ) |
32 |
28 31
|
impbid |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) = 1 ↔ 𝐴 = 1 ) ) |