| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expeqidd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
expeqidd.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 3 |
|
expeqidd.0 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 4 |
|
df-ne |
⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) |
| 5 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 6 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → 𝐴 ∈ ℂ ) |
| 7 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → 𝐴 ≠ 0 ) |
| 8 |
|
eluz2nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 10 |
9
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 11 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → 𝑁 ∈ ℤ ) |
| 12 |
6 7 11
|
expm1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) = ( ( 𝐴 ↑ 𝑁 ) / 𝐴 ) ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → ( 𝐴 ↑ 𝑁 ) = 𝐴 ) |
| 14 |
13
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → ( ( 𝐴 ↑ 𝑁 ) / 𝐴 ) = ( 𝐴 / 𝐴 ) ) |
| 15 |
6 7
|
dividd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → ( 𝐴 / 𝐴 ) = 1 ) |
| 16 |
12 14 15
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) = 1 ) |
| 17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) |
| 18 |
|
uz2m1nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
| 19 |
2 18
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
| 21 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 0 ≤ 𝐴 ) |
| 22 |
17 20 21
|
expeq1d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) = 1 ↔ 𝐴 = 1 ) ) |
| 23 |
22
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑ ( 𝑁 − 1 ) ) = 1 ) → 𝐴 = 1 ) |
| 24 |
16 23
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → 𝐴 = 1 ) |
| 25 |
24
|
an32s |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) ∧ 𝐴 ≠ 0 ) → 𝐴 = 1 ) |
| 26 |
25
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → ( 𝐴 ≠ 0 → 𝐴 = 1 ) ) |
| 27 |
4 26
|
biimtrrid |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → ( ¬ 𝐴 = 0 → 𝐴 = 1 ) ) |
| 28 |
27
|
orrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ↑ 𝑁 ) = 𝐴 ) → ( 𝐴 = 0 ∨ 𝐴 = 1 ) ) |
| 29 |
28
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) = 𝐴 → ( 𝐴 = 0 ∨ 𝐴 = 1 ) ) ) |
| 30 |
9
|
0expd |
⊢ ( 𝜑 → ( 0 ↑ 𝑁 ) = 0 ) |
| 31 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) |
| 32 |
|
id |
⊢ ( 𝐴 = 0 → 𝐴 = 0 ) |
| 33 |
31 32
|
eqeq12d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑ 𝑁 ) = 𝐴 ↔ ( 0 ↑ 𝑁 ) = 0 ) ) |
| 34 |
30 33
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐴 = 0 → ( 𝐴 ↑ 𝑁 ) = 𝐴 ) ) |
| 35 |
|
1exp |
⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) |
| 36 |
10 35
|
syl |
⊢ ( 𝜑 → ( 1 ↑ 𝑁 ) = 1 ) |
| 37 |
|
oveq1 |
⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
| 38 |
|
id |
⊢ ( 𝐴 = 1 → 𝐴 = 1 ) |
| 39 |
37 38
|
eqeq12d |
⊢ ( 𝐴 = 1 → ( ( 𝐴 ↑ 𝑁 ) = 𝐴 ↔ ( 1 ↑ 𝑁 ) = 1 ) ) |
| 40 |
36 39
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐴 = 1 → ( 𝐴 ↑ 𝑁 ) = 𝐴 ) ) |
| 41 |
34 40
|
jaod |
⊢ ( 𝜑 → ( ( 𝐴 = 0 ∨ 𝐴 = 1 ) → ( 𝐴 ↑ 𝑁 ) = 𝐴 ) ) |
| 42 |
29 41
|
impbid |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) = 𝐴 ↔ ( 𝐴 = 0 ∨ 𝐴 = 1 ) ) ) |