Step |
Hyp |
Ref |
Expression |
1 |
|
expeqidd.a |
|
2 |
|
expeqidd.n |
|
3 |
|
expeqidd.0 |
|
4 |
|
df-ne |
|
5 |
1
|
recnd |
|
6 |
5
|
ad2antrr |
|
7 |
|
simplr |
|
8 |
|
eluz2nn |
|
9 |
2 8
|
syl |
|
10 |
9
|
nnzd |
|
11 |
10
|
ad2antrr |
|
12 |
6 7 11
|
expm1d |
|
13 |
|
simpr |
|
14 |
13
|
oveq1d |
|
15 |
6 7
|
dividd |
|
16 |
12 14 15
|
3eqtrd |
|
17 |
1
|
adantr |
|
18 |
|
uz2m1nn |
|
19 |
2 18
|
syl |
|
20 |
19
|
adantr |
|
21 |
3
|
adantr |
|
22 |
17 20 21
|
expeq1d |
|
23 |
22
|
biimpa |
|
24 |
16 23
|
syldan |
|
25 |
24
|
an32s |
|
26 |
25
|
ex |
|
27 |
4 26
|
biimtrrid |
|
28 |
27
|
orrd |
|
29 |
28
|
ex |
|
30 |
9
|
0expd |
|
31 |
|
oveq1 |
|
32 |
|
id |
|
33 |
31 32
|
eqeq12d |
|
34 |
30 33
|
syl5ibrcom |
|
35 |
|
1exp |
|
36 |
10 35
|
syl |
|
37 |
|
oveq1 |
|
38 |
|
id |
|
39 |
37 38
|
eqeq12d |
|
40 |
36 39
|
syl5ibrcom |
|
41 |
34 40
|
jaod |
|
42 |
29 41
|
impbid |
|