Metamath Proof Explorer


Theorem expeqidd

Description: A nonnegative real number is zero or one if and only if it is itself when raised to an integer greater than one. (Contributed by SN, 3-Jul-2025)

Ref Expression
Hypotheses expeqidd.a φ A
expeqidd.n φ N 2
expeqidd.0 φ 0 A
Assertion expeqidd φ A N = A A = 0 A = 1

Proof

Step Hyp Ref Expression
1 expeqidd.a φ A
2 expeqidd.n φ N 2
3 expeqidd.0 φ 0 A
4 df-ne A 0 ¬ A = 0
5 1 recnd φ A
6 5 ad2antrr φ A 0 A N = A A
7 simplr φ A 0 A N = A A 0
8 eluz2nn N 2 N
9 2 8 syl φ N
10 9 nnzd φ N
11 10 ad2antrr φ A 0 A N = A N
12 6 7 11 expm1d φ A 0 A N = A A N 1 = A N A
13 simpr φ A 0 A N = A A N = A
14 13 oveq1d φ A 0 A N = A A N A = A A
15 6 7 dividd φ A 0 A N = A A A = 1
16 12 14 15 3eqtrd φ A 0 A N = A A N 1 = 1
17 1 adantr φ A 0 A
18 uz2m1nn N 2 N 1
19 2 18 syl φ N 1
20 19 adantr φ A 0 N 1
21 3 adantr φ A 0 0 A
22 17 20 21 expeq1d φ A 0 A N 1 = 1 A = 1
23 22 biimpa φ A 0 A N 1 = 1 A = 1
24 16 23 syldan φ A 0 A N = A A = 1
25 24 an32s φ A N = A A 0 A = 1
26 25 ex φ A N = A A 0 A = 1
27 4 26 biimtrrid φ A N = A ¬ A = 0 A = 1
28 27 orrd φ A N = A A = 0 A = 1
29 28 ex φ A N = A A = 0 A = 1
30 9 0expd φ 0 N = 0
31 oveq1 A = 0 A N = 0 N
32 id A = 0 A = 0
33 31 32 eqeq12d A = 0 A N = A 0 N = 0
34 30 33 syl5ibrcom φ A = 0 A N = A
35 1exp N 1 N = 1
36 10 35 syl φ 1 N = 1
37 oveq1 A = 1 A N = 1 N
38 id A = 1 A = 1
39 37 38 eqeq12d A = 1 A N = A 1 N = 1
40 36 39 syl5ibrcom φ A = 1 A N = A
41 34 40 jaod φ A = 0 A = 1 A N = A
42 29 41 impbid φ A N = A A = 0 A = 1