| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expeqidd.a |  | 
						
							| 2 |  | expeqidd.n |  | 
						
							| 3 |  | expeqidd.0 |  | 
						
							| 4 |  | df-ne |  | 
						
							| 5 | 1 | recnd |  | 
						
							| 6 | 5 | ad2antrr |  | 
						
							| 7 |  | simplr |  | 
						
							| 8 |  | eluz2nn |  | 
						
							| 9 | 2 8 | syl |  | 
						
							| 10 | 9 | nnzd |  | 
						
							| 11 | 10 | ad2antrr |  | 
						
							| 12 | 6 7 11 | expm1d |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 | 6 7 | dividd |  | 
						
							| 16 | 12 14 15 | 3eqtrd |  | 
						
							| 17 | 1 | adantr |  | 
						
							| 18 |  | uz2m1nn |  | 
						
							| 19 | 2 18 | syl |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 3 | adantr |  | 
						
							| 22 | 17 20 21 | expeq1d |  | 
						
							| 23 | 22 | biimpa |  | 
						
							| 24 | 16 23 | syldan |  | 
						
							| 25 | 24 | an32s |  | 
						
							| 26 | 25 | ex |  | 
						
							| 27 | 4 26 | biimtrrid |  | 
						
							| 28 | 27 | orrd |  | 
						
							| 29 | 28 | ex |  | 
						
							| 30 | 9 | 0expd |  | 
						
							| 31 |  | oveq1 |  | 
						
							| 32 |  | id |  | 
						
							| 33 | 31 32 | eqeq12d |  | 
						
							| 34 | 30 33 | syl5ibrcom |  | 
						
							| 35 |  | 1exp |  | 
						
							| 36 | 10 35 | syl |  | 
						
							| 37 |  | oveq1 |  | 
						
							| 38 |  | id |  | 
						
							| 39 | 37 38 | eqeq12d |  | 
						
							| 40 | 36 39 | syl5ibrcom |  | 
						
							| 41 | 34 40 | jaod |  | 
						
							| 42 | 29 41 | impbid |  |