| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expeqidd.a |
|- ( ph -> A e. RR ) |
| 2 |
|
expeqidd.n |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
| 3 |
|
expeqidd.0 |
|- ( ph -> 0 <_ A ) |
| 4 |
|
df-ne |
|- ( A =/= 0 <-> -. A = 0 ) |
| 5 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 6 |
5
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ ( A ^ N ) = A ) -> A e. CC ) |
| 7 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ ( A ^ N ) = A ) -> A =/= 0 ) |
| 8 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
| 9 |
2 8
|
syl |
|- ( ph -> N e. NN ) |
| 10 |
9
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 11 |
10
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ ( A ^ N ) = A ) -> N e. ZZ ) |
| 12 |
6 7 11
|
expm1d |
|- ( ( ( ph /\ A =/= 0 ) /\ ( A ^ N ) = A ) -> ( A ^ ( N - 1 ) ) = ( ( A ^ N ) / A ) ) |
| 13 |
|
simpr |
|- ( ( ( ph /\ A =/= 0 ) /\ ( A ^ N ) = A ) -> ( A ^ N ) = A ) |
| 14 |
13
|
oveq1d |
|- ( ( ( ph /\ A =/= 0 ) /\ ( A ^ N ) = A ) -> ( ( A ^ N ) / A ) = ( A / A ) ) |
| 15 |
6 7
|
dividd |
|- ( ( ( ph /\ A =/= 0 ) /\ ( A ^ N ) = A ) -> ( A / A ) = 1 ) |
| 16 |
12 14 15
|
3eqtrd |
|- ( ( ( ph /\ A =/= 0 ) /\ ( A ^ N ) = A ) -> ( A ^ ( N - 1 ) ) = 1 ) |
| 17 |
1
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> A e. RR ) |
| 18 |
|
uz2m1nn |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
| 19 |
2 18
|
syl |
|- ( ph -> ( N - 1 ) e. NN ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> ( N - 1 ) e. NN ) |
| 21 |
3
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> 0 <_ A ) |
| 22 |
17 20 21
|
expeq1d |
|- ( ( ph /\ A =/= 0 ) -> ( ( A ^ ( N - 1 ) ) = 1 <-> A = 1 ) ) |
| 23 |
22
|
biimpa |
|- ( ( ( ph /\ A =/= 0 ) /\ ( A ^ ( N - 1 ) ) = 1 ) -> A = 1 ) |
| 24 |
16 23
|
syldan |
|- ( ( ( ph /\ A =/= 0 ) /\ ( A ^ N ) = A ) -> A = 1 ) |
| 25 |
24
|
an32s |
|- ( ( ( ph /\ ( A ^ N ) = A ) /\ A =/= 0 ) -> A = 1 ) |
| 26 |
25
|
ex |
|- ( ( ph /\ ( A ^ N ) = A ) -> ( A =/= 0 -> A = 1 ) ) |
| 27 |
4 26
|
biimtrrid |
|- ( ( ph /\ ( A ^ N ) = A ) -> ( -. A = 0 -> A = 1 ) ) |
| 28 |
27
|
orrd |
|- ( ( ph /\ ( A ^ N ) = A ) -> ( A = 0 \/ A = 1 ) ) |
| 29 |
28
|
ex |
|- ( ph -> ( ( A ^ N ) = A -> ( A = 0 \/ A = 1 ) ) ) |
| 30 |
9
|
0expd |
|- ( ph -> ( 0 ^ N ) = 0 ) |
| 31 |
|
oveq1 |
|- ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) ) |
| 32 |
|
id |
|- ( A = 0 -> A = 0 ) |
| 33 |
31 32
|
eqeq12d |
|- ( A = 0 -> ( ( A ^ N ) = A <-> ( 0 ^ N ) = 0 ) ) |
| 34 |
30 33
|
syl5ibrcom |
|- ( ph -> ( A = 0 -> ( A ^ N ) = A ) ) |
| 35 |
|
1exp |
|- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |
| 36 |
10 35
|
syl |
|- ( ph -> ( 1 ^ N ) = 1 ) |
| 37 |
|
oveq1 |
|- ( A = 1 -> ( A ^ N ) = ( 1 ^ N ) ) |
| 38 |
|
id |
|- ( A = 1 -> A = 1 ) |
| 39 |
37 38
|
eqeq12d |
|- ( A = 1 -> ( ( A ^ N ) = A <-> ( 1 ^ N ) = 1 ) ) |
| 40 |
36 39
|
syl5ibrcom |
|- ( ph -> ( A = 1 -> ( A ^ N ) = A ) ) |
| 41 |
34 40
|
jaod |
|- ( ph -> ( ( A = 0 \/ A = 1 ) -> ( A ^ N ) = A ) ) |
| 42 |
29 41
|
impbid |
|- ( ph -> ( ( A ^ N ) = A <-> ( A = 0 \/ A = 1 ) ) ) |