Metamath Proof Explorer


Theorem expeq1d

Description: A nonnegative real number is one if and only if it is one when raised to a positive integer. (Contributed by SN, 3-Jul-2025)

Ref Expression
Hypotheses expeq1d.a
|- ( ph -> A e. RR )
expeq1d.n
|- ( ph -> N e. NN )
expeq1d.0
|- ( ph -> 0 <_ A )
Assertion expeq1d
|- ( ph -> ( ( A ^ N ) = 1 <-> A = 1 ) )

Proof

Step Hyp Ref Expression
1 expeq1d.a
 |-  ( ph -> A e. RR )
2 expeq1d.n
 |-  ( ph -> N e. NN )
3 expeq1d.0
 |-  ( ph -> 0 <_ A )
4 2 nnzd
 |-  ( ph -> N e. ZZ )
5 1exp
 |-  ( N e. ZZ -> ( 1 ^ N ) = 1 )
6 4 5 syl
 |-  ( ph -> ( 1 ^ N ) = 1 )
7 6 eqeq2d
 |-  ( ph -> ( ( A ^ N ) = ( 1 ^ N ) <-> ( A ^ N ) = 1 ) )
8 1 adantr
 |-  ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> A e. RR )
9 3 adantr
 |-  ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> 0 <_ A )
10 0ne1
 |-  0 =/= 1
11 10 a1i
 |-  ( ph -> 0 =/= 1 )
12 2 0expd
 |-  ( ph -> ( 0 ^ N ) = 0 )
13 11 12 6 3netr4d
 |-  ( ph -> ( 0 ^ N ) =/= ( 1 ^ N ) )
14 13 adantr
 |-  ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> ( 0 ^ N ) =/= ( 1 ^ N ) )
15 oveq1
 |-  ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) )
16 15 eqeq1d
 |-  ( A = 0 -> ( ( A ^ N ) = ( 1 ^ N ) <-> ( 0 ^ N ) = ( 1 ^ N ) ) )
17 16 biimpac
 |-  ( ( ( A ^ N ) = ( 1 ^ N ) /\ A = 0 ) -> ( 0 ^ N ) = ( 1 ^ N ) )
18 17 adantll
 |-  ( ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) /\ A = 0 ) -> ( 0 ^ N ) = ( 1 ^ N ) )
19 14 18 mteqand
 |-  ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> A =/= 0 )
20 8 9 19 ne0gt0d
 |-  ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> 0 < A )
21 8 20 elrpd
 |-  ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> A e. RR+ )
22 1rp
 |-  1 e. RR+
23 22 a1i
 |-  ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> 1 e. RR+ )
24 2 adantr
 |-  ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> N e. NN )
25 simpr
 |-  ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> ( A ^ N ) = ( 1 ^ N ) )
26 21 23 24 25 exp11nnd
 |-  ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> A = 1 )
27 26 ex
 |-  ( ph -> ( ( A ^ N ) = ( 1 ^ N ) -> A = 1 ) )
28 7 27 sylbird
 |-  ( ph -> ( ( A ^ N ) = 1 -> A = 1 ) )
29 oveq1
 |-  ( A = 1 -> ( A ^ N ) = ( 1 ^ N ) )
30 29 eqeq1d
 |-  ( A = 1 -> ( ( A ^ N ) = 1 <-> ( 1 ^ N ) = 1 ) )
31 6 30 syl5ibrcom
 |-  ( ph -> ( A = 1 -> ( A ^ N ) = 1 ) )
32 28 31 impbid
 |-  ( ph -> ( ( A ^ N ) = 1 <-> A = 1 ) )