| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expeq1d.a |
|- ( ph -> A e. RR ) |
| 2 |
|
expeq1d.n |
|- ( ph -> N e. NN ) |
| 3 |
|
expeq1d.0 |
|- ( ph -> 0 <_ A ) |
| 4 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 5 |
|
1exp |
|- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |
| 6 |
4 5
|
syl |
|- ( ph -> ( 1 ^ N ) = 1 ) |
| 7 |
6
|
eqeq2d |
|- ( ph -> ( ( A ^ N ) = ( 1 ^ N ) <-> ( A ^ N ) = 1 ) ) |
| 8 |
1
|
adantr |
|- ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> A e. RR ) |
| 9 |
3
|
adantr |
|- ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> 0 <_ A ) |
| 10 |
|
0ne1 |
|- 0 =/= 1 |
| 11 |
10
|
a1i |
|- ( ph -> 0 =/= 1 ) |
| 12 |
2
|
0expd |
|- ( ph -> ( 0 ^ N ) = 0 ) |
| 13 |
11 12 6
|
3netr4d |
|- ( ph -> ( 0 ^ N ) =/= ( 1 ^ N ) ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> ( 0 ^ N ) =/= ( 1 ^ N ) ) |
| 15 |
|
oveq1 |
|- ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) ) |
| 16 |
15
|
eqeq1d |
|- ( A = 0 -> ( ( A ^ N ) = ( 1 ^ N ) <-> ( 0 ^ N ) = ( 1 ^ N ) ) ) |
| 17 |
16
|
biimpac |
|- ( ( ( A ^ N ) = ( 1 ^ N ) /\ A = 0 ) -> ( 0 ^ N ) = ( 1 ^ N ) ) |
| 18 |
17
|
adantll |
|- ( ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) /\ A = 0 ) -> ( 0 ^ N ) = ( 1 ^ N ) ) |
| 19 |
14 18
|
mteqand |
|- ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> A =/= 0 ) |
| 20 |
8 9 19
|
ne0gt0d |
|- ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> 0 < A ) |
| 21 |
8 20
|
elrpd |
|- ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> A e. RR+ ) |
| 22 |
|
1rp |
|- 1 e. RR+ |
| 23 |
22
|
a1i |
|- ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> 1 e. RR+ ) |
| 24 |
2
|
adantr |
|- ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> N e. NN ) |
| 25 |
|
simpr |
|- ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> ( A ^ N ) = ( 1 ^ N ) ) |
| 26 |
21 23 24 25
|
exp11nnd |
|- ( ( ph /\ ( A ^ N ) = ( 1 ^ N ) ) -> A = 1 ) |
| 27 |
26
|
ex |
|- ( ph -> ( ( A ^ N ) = ( 1 ^ N ) -> A = 1 ) ) |
| 28 |
7 27
|
sylbird |
|- ( ph -> ( ( A ^ N ) = 1 -> A = 1 ) ) |
| 29 |
|
oveq1 |
|- ( A = 1 -> ( A ^ N ) = ( 1 ^ N ) ) |
| 30 |
29
|
eqeq1d |
|- ( A = 1 -> ( ( A ^ N ) = 1 <-> ( 1 ^ N ) = 1 ) ) |
| 31 |
6 30
|
syl5ibrcom |
|- ( ph -> ( A = 1 -> ( A ^ N ) = 1 ) ) |
| 32 |
28 31
|
impbid |
|- ( ph -> ( ( A ^ N ) = 1 <-> A = 1 ) ) |