Metamath Proof Explorer


Theorem lvecgrp

Description: A vector space is a group. (Contributed by SN, 28-May-2023)

Ref Expression
Assertion lvecgrp ( 𝑊 ∈ LVec → 𝑊 ∈ Grp )

Proof

Step Hyp Ref Expression
1 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
2 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
3 1 2 syl ( 𝑊 ∈ LVec → 𝑊 ∈ Grp )