| Step |
Hyp |
Ref |
Expression |
| 1 |
|
canth2g |
⊢ ( 𝐴 ∈ Fin → 𝐴 ≺ 𝒫 𝐴 ) |
| 2 |
|
pwfi |
⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) |
| 3 |
|
fzfi |
⊢ ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ∈ Fin |
| 4 |
|
nnex |
⊢ ℕ ∈ V |
| 5 |
|
fz1ssnn |
⊢ ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ⊆ ℕ |
| 6 |
|
ssdomfi2 |
⊢ ( ( ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ∈ Fin ∧ ℕ ∈ V ∧ ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ⊆ ℕ ) → ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≼ ℕ ) |
| 7 |
3 4 5 6
|
mp3an |
⊢ ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≼ ℕ |
| 8 |
|
isfinite4 |
⊢ ( 𝒫 𝐴 ∈ Fin ↔ ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≈ 𝒫 𝐴 ) |
| 9 |
|
domen1 |
⊢ ( ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≈ 𝒫 𝐴 → ( ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≼ ℕ ↔ 𝒫 𝐴 ≼ ℕ ) ) |
| 10 |
8 9
|
sylbi |
⊢ ( 𝒫 𝐴 ∈ Fin → ( ( 1 ... ( ♯ ‘ 𝒫 𝐴 ) ) ≼ ℕ ↔ 𝒫 𝐴 ≼ ℕ ) ) |
| 11 |
7 10
|
mpbii |
⊢ ( 𝒫 𝐴 ∈ Fin → 𝒫 𝐴 ≼ ℕ ) |
| 12 |
2 11
|
sylbi |
⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ≼ ℕ ) |
| 13 |
|
sdomdomtrfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≼ ℕ ) → 𝐴 ≺ ℕ ) |
| 14 |
1 12 13
|
mpd3an23 |
⊢ ( 𝐴 ∈ Fin → 𝐴 ≺ ℕ ) |