Metamath Proof Explorer


Theorem asclf1

Description: Two ways of saying the scalar injection is one-to-one. (Contributed by SN, 3-Jul-2025)

Ref Expression
Hypotheses asclf1.a A = algSc W
asclf1.b B = Base W
asclf1.s S = Scalar W
asclf1.k K = Base S
asclf1.0 0 ˙ = 0 W
asclf1.n N = 0 S
asclf1.r φ W Ring
asclf1.m φ W LMod
Assertion asclf1 φ A : K 1-1 B s K A s = 0 ˙ s = N

Proof

Step Hyp Ref Expression
1 asclf1.a A = algSc W
2 asclf1.b B = Base W
3 asclf1.s S = Scalar W
4 asclf1.k K = Base S
5 asclf1.0 0 ˙ = 0 W
6 asclf1.n N = 0 S
7 asclf1.r φ W Ring
8 asclf1.m φ W LMod
9 1 3 7 8 asclghm φ A S GrpHom W
10 4 2 6 5 ghmf1 A S GrpHom W A : K 1-1 B s K A s = 0 ˙ s = N
11 9 10 syl φ A : K 1-1 B s K A s = 0 ˙ s = N