Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Structures
asclf1
Next ⟩
abvexp
Metamath Proof Explorer
Ascii
Unicode
Theorem
asclf1
Description:
Two ways of saying the scalar injection is one-to-one.
(Contributed by
SN
, 3-Jul-2025)
Ref
Expression
Hypotheses
asclf1.a
⊢
A
=
algSc
⁡
W
asclf1.b
⊢
B
=
Base
W
asclf1.s
⊢
S
=
Scalar
⁡
W
asclf1.k
⊢
K
=
Base
S
asclf1.0
⊢
0
˙
=
0
W
asclf1.n
⊢
N
=
0
S
asclf1.r
⊢
φ
→
W
∈
Ring
asclf1.m
⊢
φ
→
W
∈
LMod
Assertion
asclf1
⊢
φ
→
A
:
K
⟶
1-1
B
↔
∀
s
∈
K
A
⁡
s
=
0
˙
→
s
=
N
Proof
Step
Hyp
Ref
Expression
1
asclf1.a
⊢
A
=
algSc
⁡
W
2
asclf1.b
⊢
B
=
Base
W
3
asclf1.s
⊢
S
=
Scalar
⁡
W
4
asclf1.k
⊢
K
=
Base
S
5
asclf1.0
⊢
0
˙
=
0
W
6
asclf1.n
⊢
N
=
0
S
7
asclf1.r
⊢
φ
→
W
∈
Ring
8
asclf1.m
⊢
φ
→
W
∈
LMod
9
1
3
7
8
asclghm
⊢
φ
→
A
∈
S
GrpHom
W
10
4
2
6
5
ghmf1
⊢
A
∈
S
GrpHom
W
→
A
:
K
⟶
1-1
B
↔
∀
s
∈
K
A
⁡
s
=
0
˙
→
s
=
N
11
9
10
syl
⊢
φ
→
A
:
K
⟶
1-1
B
↔
∀
s
∈
K
A
⁡
s
=
0
˙
→
s
=
N