Description: Two ways of saying the scalar injection is one-to-one. (Contributed by SN, 3-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclf1.a | |- A = ( algSc ` W ) |
|
| asclf1.b | |- B = ( Base ` W ) |
||
| asclf1.s | |- S = ( Scalar ` W ) |
||
| asclf1.k | |- K = ( Base ` S ) |
||
| asclf1.0 | |- .0. = ( 0g ` W ) |
||
| asclf1.n | |- N = ( 0g ` S ) |
||
| asclf1.r | |- ( ph -> W e. Ring ) |
||
| asclf1.m | |- ( ph -> W e. LMod ) |
||
| Assertion | asclf1 | |- ( ph -> ( A : K -1-1-> B <-> A. s e. K ( ( A ` s ) = .0. -> s = N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclf1.a | |- A = ( algSc ` W ) |
|
| 2 | asclf1.b | |- B = ( Base ` W ) |
|
| 3 | asclf1.s | |- S = ( Scalar ` W ) |
|
| 4 | asclf1.k | |- K = ( Base ` S ) |
|
| 5 | asclf1.0 | |- .0. = ( 0g ` W ) |
|
| 6 | asclf1.n | |- N = ( 0g ` S ) |
|
| 7 | asclf1.r | |- ( ph -> W e. Ring ) |
|
| 8 | asclf1.m | |- ( ph -> W e. LMod ) |
|
| 9 | 1 3 7 8 | asclghm | |- ( ph -> A e. ( S GrpHom W ) ) |
| 10 | 4 2 6 5 | ghmf1 | |- ( A e. ( S GrpHom W ) -> ( A : K -1-1-> B <-> A. s e. K ( ( A ` s ) = .0. -> s = N ) ) ) |
| 11 | 9 10 | syl | |- ( ph -> ( A : K -1-1-> B <-> A. s e. K ( ( A ` s ) = .0. -> s = N ) ) ) |