Metamath Proof Explorer


Theorem asclf1

Description: Two ways of saying the scalar injection is one-to-one. (Contributed by SN, 3-Jul-2025)

Ref Expression
Hypotheses asclf1.a
|- A = ( algSc ` W )
asclf1.b
|- B = ( Base ` W )
asclf1.s
|- S = ( Scalar ` W )
asclf1.k
|- K = ( Base ` S )
asclf1.0
|- .0. = ( 0g ` W )
asclf1.n
|- N = ( 0g ` S )
asclf1.r
|- ( ph -> W e. Ring )
asclf1.m
|- ( ph -> W e. LMod )
Assertion asclf1
|- ( ph -> ( A : K -1-1-> B <-> A. s e. K ( ( A ` s ) = .0. -> s = N ) ) )

Proof

Step Hyp Ref Expression
1 asclf1.a
 |-  A = ( algSc ` W )
2 asclf1.b
 |-  B = ( Base ` W )
3 asclf1.s
 |-  S = ( Scalar ` W )
4 asclf1.k
 |-  K = ( Base ` S )
5 asclf1.0
 |-  .0. = ( 0g ` W )
6 asclf1.n
 |-  N = ( 0g ` S )
7 asclf1.r
 |-  ( ph -> W e. Ring )
8 asclf1.m
 |-  ( ph -> W e. LMod )
9 1 3 7 8 asclghm
 |-  ( ph -> A e. ( S GrpHom W ) )
10 4 2 6 5 ghmf1
 |-  ( A e. ( S GrpHom W ) -> ( A : K -1-1-> B <-> A. s e. K ( ( A ` s ) = .0. -> s = N ) ) )
11 9 10 syl
 |-  ( ph -> ( A : K -1-1-> B <-> A. s e. K ( ( A ` s ) = .0. -> s = N ) ) )