Description: Two ways of saying the scalar injection is one-to-one. (Contributed by SN, 3-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | asclf1.a | |- A = ( algSc ` W ) |
|
asclf1.b | |- B = ( Base ` W ) |
||
asclf1.s | |- S = ( Scalar ` W ) |
||
asclf1.k | |- K = ( Base ` S ) |
||
asclf1.0 | |- .0. = ( 0g ` W ) |
||
asclf1.n | |- N = ( 0g ` S ) |
||
asclf1.r | |- ( ph -> W e. Ring ) |
||
asclf1.m | |- ( ph -> W e. LMod ) |
||
Assertion | asclf1 | |- ( ph -> ( A : K -1-1-> B <-> A. s e. K ( ( A ` s ) = .0. -> s = N ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclf1.a | |- A = ( algSc ` W ) |
|
2 | asclf1.b | |- B = ( Base ` W ) |
|
3 | asclf1.s | |- S = ( Scalar ` W ) |
|
4 | asclf1.k | |- K = ( Base ` S ) |
|
5 | asclf1.0 | |- .0. = ( 0g ` W ) |
|
6 | asclf1.n | |- N = ( 0g ` S ) |
|
7 | asclf1.r | |- ( ph -> W e. Ring ) |
|
8 | asclf1.m | |- ( ph -> W e. LMod ) |
|
9 | 1 3 7 8 | asclghm | |- ( ph -> A e. ( S GrpHom W ) ) |
10 | 4 2 6 5 | ghmf1 | |- ( A e. ( S GrpHom W ) -> ( A : K -1-1-> B <-> A. s e. K ( ( A ` s ) = .0. -> s = N ) ) ) |
11 | 9 10 | syl | |- ( ph -> ( A : K -1-1-> B <-> A. s e. K ( ( A ` s ) = .0. -> s = N ) ) ) |