Description: Ring isomorphism is symmetric. (Contributed by SN, 10-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ricsym | ⊢ ( 𝑅 ≃𝑟 𝑆 → 𝑆 ≃𝑟 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brric | ⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( 𝑅 RingIso 𝑆 ) ≠ ∅ ) | |
| 2 | n0 | ⊢ ( ( 𝑅 RingIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) ) | |
| 3 | rimcnv | ⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → ◡ 𝑓 ∈ ( 𝑆 RingIso 𝑅 ) ) | |
| 4 | brrici | ⊢ ( ◡ 𝑓 ∈ ( 𝑆 RingIso 𝑅 ) → 𝑆 ≃𝑟 𝑅 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑆 ≃𝑟 𝑅 ) |
| 6 | 5 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑆 ≃𝑟 𝑅 ) |
| 7 | 2 6 | sylbi | ⊢ ( ( 𝑅 RingIso 𝑆 ) ≠ ∅ → 𝑆 ≃𝑟 𝑅 ) |
| 8 | 1 7 | sylbi | ⊢ ( 𝑅 ≃𝑟 𝑆 → 𝑆 ≃𝑟 𝑅 ) |