Description: Ring isomorphism is symmetric. (Contributed by SN, 10-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ricsym | |- ( R ~=r S -> S ~=r R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brric | |- ( R ~=r S <-> ( R RingIso S ) =/= (/) ) |
|
| 2 | n0 | |- ( ( R RingIso S ) =/= (/) <-> E. f f e. ( R RingIso S ) ) |
|
| 3 | rimcnv | |- ( f e. ( R RingIso S ) -> `' f e. ( S RingIso R ) ) |
|
| 4 | brrici | |- ( `' f e. ( S RingIso R ) -> S ~=r R ) |
|
| 5 | 3 4 | syl | |- ( f e. ( R RingIso S ) -> S ~=r R ) |
| 6 | 5 | exlimiv | |- ( E. f f e. ( R RingIso S ) -> S ~=r R ) |
| 7 | 2 6 | sylbi | |- ( ( R RingIso S ) =/= (/) -> S ~=r R ) |
| 8 | 1 7 | sylbi | |- ( R ~=r S -> S ~=r R ) |