Description: A ring is a division ring if and only if an isomorphic ring is a division ring. (Contributed by SN, 18-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ricdrng | |- ( R ~=r S -> ( R e. DivRing <-> S e. DivRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ricdrng1 | |- ( ( R ~=r S /\ R e. DivRing ) -> S e. DivRing ) |
|
| 2 | ricsym | |- ( R ~=r S -> S ~=r R ) |
|
| 3 | ricdrng1 | |- ( ( S ~=r R /\ S e. DivRing ) -> R e. DivRing ) |
|
| 4 | 2 3 | sylan | |- ( ( R ~=r S /\ S e. DivRing ) -> R e. DivRing ) |
| 5 | 1 4 | impbida | |- ( R ~=r S -> ( R e. DivRing <-> S e. DivRing ) ) |