Metamath Proof Explorer


Definition df-retr

Description: Define the set of retractions on two topological spaces. We say that R is a retraction from J to K . or R e. ( J Retr K ) iff there is an S such that R : J --> K , S : K --> J are continuous functions called the retraction and section respectively, and their composite R o. S is homotopic to the identity map. If a retraction exists, we say J is a retract of K . (This terminology is borrowed from HoTT and appears to be nonstandard, although it has similaries to the concept of retract in the category of topological spaces and to a deformation retract in general topology.) Two topological spaces that are retracts of each other are called homotopy equivalent. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-retr
|- Retr = ( j e. Top , k e. Top |-> { r e. ( j Cn k ) | E. s e. ( k Cn j ) ( ( r o. s ) ( j Htpy j ) ( _I |` U. j ) ) =/= (/) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cretr
 |-  Retr
1 vj
 |-  j
2 ctop
 |-  Top
3 vk
 |-  k
4 vr
 |-  r
5 1 cv
 |-  j
6 ccn
 |-  Cn
7 3 cv
 |-  k
8 5 7 6 co
 |-  ( j Cn k )
9 vs
 |-  s
10 7 5 6 co
 |-  ( k Cn j )
11 4 cv
 |-  r
12 9 cv
 |-  s
13 11 12 ccom
 |-  ( r o. s )
14 chtpy
 |-  Htpy
15 5 5 14 co
 |-  ( j Htpy j )
16 cid
 |-  _I
17 5 cuni
 |-  U. j
18 16 17 cres
 |-  ( _I |` U. j )
19 13 18 15 co
 |-  ( ( r o. s ) ( j Htpy j ) ( _I |` U. j ) )
20 c0
 |-  (/)
21 19 20 wne
 |-  ( ( r o. s ) ( j Htpy j ) ( _I |` U. j ) ) =/= (/)
22 21 9 10 wrex
 |-  E. s e. ( k Cn j ) ( ( r o. s ) ( j Htpy j ) ( _I |` U. j ) ) =/= (/)
23 22 4 8 crab
 |-  { r e. ( j Cn k ) | E. s e. ( k Cn j ) ( ( r o. s ) ( j Htpy j ) ( _I |` U. j ) ) =/= (/) }
24 1 3 2 2 23 cmpo
 |-  ( j e. Top , k e. Top |-> { r e. ( j Cn k ) | E. s e. ( k Cn j ) ( ( r o. s ) ( j Htpy j ) ( _I |` U. j ) ) =/= (/) } )
25 0 24 wceq
 |-  Retr = ( j e. Top , k e. Top |-> { r e. ( j Cn k ) | E. s e. ( k Cn j ) ( ( r o. s ) ( j Htpy j ) ( _I |` U. j ) ) =/= (/) } )