Metamath Proof Explorer


Definition df-retr

Description: Define the set of retractions on two topological spaces. We say that R is a retraction from J to K . or R e. ( J Retr K ) iff there is an S such that R : J --> K , S : K --> J are continuous functions called the retraction and section respectively, and their composite R o. S is homotopic to the identity map. If a retraction exists, we say J is a retract of K . (This terminology is borrowed from HoTT and appears to be nonstandard, although it has similaries to the concept of retract in the category of topological spaces and to a deformation retract in general topology.) Two topological spaces that are retracts of each other are called homotopy equivalent. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-retr Retr=jTop,kToprjCnk|skCnjrsjHtpyjIj

Detailed syntax breakdown

Step Hyp Ref Expression
0 cretr classRetr
1 vj setvarj
2 ctop classTop
3 vk setvark
4 vr setvarr
5 1 cv setvarj
6 ccn classCn
7 3 cv setvark
8 5 7 6 co classjCnk
9 vs setvars
10 7 5 6 co classkCnj
11 4 cv setvarr
12 9 cv setvars
13 11 12 ccom classrs
14 chtpy classHtpy
15 5 5 14 co classjHtpyj
16 cid classI
17 5 cuni classj
18 16 17 cres classIj
19 13 18 15 co classrsjHtpyjIj
20 c0 class
21 19 20 wne wffrsjHtpyjIj
22 21 9 10 wrex wffskCnjrsjHtpyjIj
23 22 4 8 crab classrjCnk|skCnjrsjHtpyjIj
24 1 3 2 2 23 cmpo classjTop,kToprjCnk|skCnjrsjHtpyjIj
25 0 24 wceq wffRetr=jTop,kToprjCnk|skCnjrsjHtpyjIj