| Step | Hyp | Ref | Expression | 
						
							| 0 |  | crmy |  |-  rmY | 
						
							| 1 |  | va |  |-  a | 
						
							| 2 |  | cuz |  |-  ZZ>= | 
						
							| 3 |  | c2 |  |-  2 | 
						
							| 4 | 3 2 | cfv |  |-  ( ZZ>= ` 2 ) | 
						
							| 5 |  | vn |  |-  n | 
						
							| 6 |  | cz |  |-  ZZ | 
						
							| 7 |  | c2nd |  |-  2nd | 
						
							| 8 |  | vb |  |-  b | 
						
							| 9 |  | cn0 |  |-  NN0 | 
						
							| 10 | 9 6 | cxp |  |-  ( NN0 X. ZZ ) | 
						
							| 11 |  | c1st |  |-  1st | 
						
							| 12 | 8 | cv |  |-  b | 
						
							| 13 | 12 11 | cfv |  |-  ( 1st ` b ) | 
						
							| 14 |  | caddc |  |-  + | 
						
							| 15 |  | csqrt |  |-  sqrt | 
						
							| 16 | 1 | cv |  |-  a | 
						
							| 17 |  | cexp |  |-  ^ | 
						
							| 18 | 16 3 17 | co |  |-  ( a ^ 2 ) | 
						
							| 19 |  | cmin |  |-  - | 
						
							| 20 |  | c1 |  |-  1 | 
						
							| 21 | 18 20 19 | co |  |-  ( ( a ^ 2 ) - 1 ) | 
						
							| 22 | 21 15 | cfv |  |-  ( sqrt ` ( ( a ^ 2 ) - 1 ) ) | 
						
							| 23 |  | cmul |  |-  x. | 
						
							| 24 | 12 7 | cfv |  |-  ( 2nd ` b ) | 
						
							| 25 | 22 24 23 | co |  |-  ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) | 
						
							| 26 | 13 25 14 | co |  |-  ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) | 
						
							| 27 | 8 10 26 | cmpt |  |-  ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) | 
						
							| 28 | 27 | ccnv |  |-  `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) | 
						
							| 29 | 16 22 14 | co |  |-  ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) | 
						
							| 30 | 5 | cv |  |-  n | 
						
							| 31 | 29 30 17 | co |  |-  ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) | 
						
							| 32 | 31 28 | cfv |  |-  ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) | 
						
							| 33 | 32 7 | cfv |  |-  ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) ) | 
						
							| 34 | 1 5 4 6 33 | cmpo |  |-  ( a e. ( ZZ>= ` 2 ) , n e. ZZ |-> ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) ) ) | 
						
							| 35 | 0 34 | wceq |  |-  rmY = ( a e. ( ZZ>= ` 2 ) , n e. ZZ |-> ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) ) ) |