Metamath Proof Explorer


Definition df-rmy

Description: Define the X sequence as the irrational part of some solution of a special Pell equation. See frmy and rmxyval for a more useful but non-eliminable definition. (Contributed by Stefan O'Rear, 21-Sep-2014)

Ref Expression
Assertion df-rmy Yrm=a2,n2ndb0×1stb+a212ndb-1a+a21n

Detailed syntax breakdown

Step Hyp Ref Expression
0 crmy classYrm
1 va setvara
2 cuz class
3 c2 class2
4 3 2 cfv class2
5 vn setvarn
6 cz class
7 c2nd class2nd
8 vb setvarb
9 cn0 class0
10 9 6 cxp class0×
11 c1st class1st
12 8 cv setvarb
13 12 11 cfv class1stb
14 caddc class+
15 csqrt class
16 1 cv setvara
17 cexp class^
18 16 3 17 co classa2
19 cmin class
20 c1 class1
21 18 20 19 co classa21
22 21 15 cfv classa21
23 cmul class×
24 12 7 cfv class2ndb
25 22 24 23 co classa212ndb
26 13 25 14 co class1stb+a212ndb
27 8 10 26 cmpt classb0×1stb+a212ndb
28 27 ccnv classb0×1stb+a212ndb-1
29 16 22 14 co classa+a21
30 5 cv setvarn
31 29 30 17 co classa+a21n
32 31 28 cfv classb0×1stb+a212ndb-1a+a21n
33 32 7 cfv class2ndb0×1stb+a212ndb-1a+a21n
34 1 5 4 6 33 cmpo classa2,n2ndb0×1stb+a212ndb-1a+a21n
35 0 34 wceq wffYrm=a2,n2ndb0×1stb+a212ndb-1a+a21n