Metamath Proof Explorer


Theorem rmxyval

Description: Main definition of the X and Y sequences. Compare definition 2.3 of JonesMatijasevic p. 694. (Contributed by Stefan O'Rear, 19-Oct-2014)

Ref Expression
Assertion rmxyval A 2 N A X rm N + A 2 1 A Y rm N = A + A 2 1 N

Proof

Step Hyp Ref Expression
1 rmxfval A 2 N A X rm N = 1 st b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N
2 rmyfval A 2 N A Y rm N = 2 nd b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N
3 2 oveq2d A 2 N A 2 1 A Y rm N = A 2 1 2 nd b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N
4 1 3 oveq12d A 2 N A X rm N + A 2 1 A Y rm N = 1 st b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N + A 2 1 2 nd b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N
5 rmxyelxp A 2 N b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N 0 ×
6 fveq2 a = b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N 1 st a = 1 st b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N
7 fveq2 a = b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N 2 nd a = 2 nd b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N
8 7 oveq2d a = b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N A 2 1 2 nd a = A 2 1 2 nd b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N
9 6 8 oveq12d a = b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N 1 st a + A 2 1 2 nd a = 1 st b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N + A 2 1 2 nd b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N
10 fveq2 b = a 1 st b = 1 st a
11 fveq2 b = a 2 nd b = 2 nd a
12 11 oveq2d b = a A 2 1 2 nd b = A 2 1 2 nd a
13 10 12 oveq12d b = a 1 st b + A 2 1 2 nd b = 1 st a + A 2 1 2 nd a
14 13 cbvmptv b 0 × 1 st b + A 2 1 2 nd b = a 0 × 1 st a + A 2 1 2 nd a
15 ovex 1 st b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N + A 2 1 2 nd b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N V
16 9 14 15 fvmpt b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N 0 × b 0 × 1 st b + A 2 1 2 nd b b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N = 1 st b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N + A 2 1 2 nd b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N
17 5 16 syl A 2 N b 0 × 1 st b + A 2 1 2 nd b b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N = 1 st b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N + A 2 1 2 nd b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N
18 rmxypairf1o A 2 b 0 × 1 st b + A 2 1 2 nd b : 0 × 1-1 onto a | c 0 d a = c + A 2 1 d
19 18 adantr A 2 N b 0 × 1 st b + A 2 1 2 nd b : 0 × 1-1 onto a | c 0 d a = c + A 2 1 d
20 rmxyelqirr A 2 N A + A 2 1 N a | c 0 d a = c + A 2 1 d
21 f1ocnvfv2 b 0 × 1 st b + A 2 1 2 nd b : 0 × 1-1 onto a | c 0 d a = c + A 2 1 d A + A 2 1 N a | c 0 d a = c + A 2 1 d b 0 × 1 st b + A 2 1 2 nd b b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N = A + A 2 1 N
22 19 20 21 syl2anc A 2 N b 0 × 1 st b + A 2 1 2 nd b b 0 × 1 st b + A 2 1 2 nd b -1 A + A 2 1 N = A + A 2 1 N
23 4 17 22 3eqtr2d A 2 N A X rm N + A 2 1 A Y rm N = A + A 2 1 N