Metamath Proof Explorer


Theorem rmxyval

Description: Main definition of the X and Y sequences. Compare definition 2.3 of JonesMatijasevic p. 694. (Contributed by Stefan O'Rear, 19-Oct-2014)

Ref Expression
Assertion rmxyval A2NAXrmN+A21AYrmN=A+A21N

Proof

Step Hyp Ref Expression
1 rmxfval A2NAXrmN=1stb0×1stb+A212ndb-1A+A21N
2 rmyfval A2NAYrmN=2ndb0×1stb+A212ndb-1A+A21N
3 2 oveq2d A2NA21AYrmN=A212ndb0×1stb+A212ndb-1A+A21N
4 1 3 oveq12d A2NAXrmN+A21AYrmN=1stb0×1stb+A212ndb-1A+A21N+A212ndb0×1stb+A212ndb-1A+A21N
5 rmxyelxp A2Nb0×1stb+A212ndb-1A+A21N0×
6 fveq2 a=b0×1stb+A212ndb-1A+A21N1sta=1stb0×1stb+A212ndb-1A+A21N
7 fveq2 a=b0×1stb+A212ndb-1A+A21N2nda=2ndb0×1stb+A212ndb-1A+A21N
8 7 oveq2d a=b0×1stb+A212ndb-1A+A21NA212nda=A212ndb0×1stb+A212ndb-1A+A21N
9 6 8 oveq12d a=b0×1stb+A212ndb-1A+A21N1sta+A212nda=1stb0×1stb+A212ndb-1A+A21N+A212ndb0×1stb+A212ndb-1A+A21N
10 fveq2 b=a1stb=1sta
11 fveq2 b=a2ndb=2nda
12 11 oveq2d b=aA212ndb=A212nda
13 10 12 oveq12d b=a1stb+A212ndb=1sta+A212nda
14 13 cbvmptv b0×1stb+A212ndb=a0×1sta+A212nda
15 ovex 1stb0×1stb+A212ndb-1A+A21N+A212ndb0×1stb+A212ndb-1A+A21NV
16 9 14 15 fvmpt b0×1stb+A212ndb-1A+A21N0×b0×1stb+A212ndbb0×1stb+A212ndb-1A+A21N=1stb0×1stb+A212ndb-1A+A21N+A212ndb0×1stb+A212ndb-1A+A21N
17 5 16 syl A2Nb0×1stb+A212ndbb0×1stb+A212ndb-1A+A21N=1stb0×1stb+A212ndb-1A+A21N+A212ndb0×1stb+A212ndb-1A+A21N
18 rmxypairf1o A2b0×1stb+A212ndb:0×1-1 ontoa|c0da=c+A21d
19 18 adantr A2Nb0×1stb+A212ndb:0×1-1 ontoa|c0da=c+A21d
20 rmxyelqirr A2NA+A21Na|c0da=c+A21d
21 f1ocnvfv2 b0×1stb+A212ndb:0×1-1 ontoa|c0da=c+A21dA+A21Na|c0da=c+A21db0×1stb+A212ndbb0×1stb+A212ndb-1A+A21N=A+A21N
22 19 20 21 syl2anc A2Nb0×1stb+A212ndbb0×1stb+A212ndb-1A+A21N=A+A21N
23 4 17 22 3eqtr2d A2NAXrmN+A21AYrmN=A+A21N