Metamath Proof Explorer


Theorem rmxyelqirr

Description: The solutions used to construct the X and Y sequences are quadratic irrationals. (Contributed by Stefan O'Rear, 21-Sep-2014)

Ref Expression
Assertion rmxyelqirr A 2 N A + A 2 1 N a | c 0 d a = c + A 2 1 d

Proof

Step Hyp Ref Expression
1 rmspecnonsq A 2 A 2 1
2 1 adantr A 2 N A 2 1
3 pell14qrval A 2 1 Pell14QR A 2 1 = a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1
4 2 3 syl A 2 N Pell14QR A 2 1 = a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1
5 simpl a = c + A 2 1 d c 2 A 2 1 d 2 = 1 a = c + A 2 1 d
6 5 reximi d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 d a = c + A 2 1 d
7 6 reximi c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 c 0 d a = c + A 2 1 d
8 7 rgenw a c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 c 0 d a = c + A 2 1 d
9 8 a1i A 2 N a c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 c 0 d a = c + A 2 1 d
10 ss2rab a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 a | c 0 d a = c + A 2 1 d a c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 c 0 d a = c + A 2 1 d
11 9 10 sylibr A 2 N a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 a | c 0 d a = c + A 2 1 d
12 ssv V
13 rabss2 V a | c 0 d a = c + A 2 1 d a V | c 0 d a = c + A 2 1 d
14 12 13 ax-mp a | c 0 d a = c + A 2 1 d a V | c 0 d a = c + A 2 1 d
15 11 14 sstrdi A 2 N a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 a V | c 0 d a = c + A 2 1 d
16 rabab a V | c 0 d a = c + A 2 1 d = a | c 0 d a = c + A 2 1 d
17 15 16 sseqtrdi A 2 N a | c 0 d a = c + A 2 1 d c 2 A 2 1 d 2 = 1 a | c 0 d a = c + A 2 1 d
18 4 17 eqsstrd A 2 N Pell14QR A 2 1 a | c 0 d a = c + A 2 1 d
19 simpr A 2 N N
20 rmspecfund A 2 PellFund A 2 1 = A + A 2 1
21 20 adantr A 2 N PellFund A 2 1 = A + A 2 1
22 21 eqcomd A 2 N A + A 2 1 = PellFund A 2 1
23 22 oveq1d A 2 N A + A 2 1 N = PellFund A 2 1 N
24 oveq2 a = N PellFund A 2 1 a = PellFund A 2 1 N
25 24 rspceeqv N A + A 2 1 N = PellFund A 2 1 N a A + A 2 1 N = PellFund A 2 1 a
26 19 23 25 syl2anc A 2 N a A + A 2 1 N = PellFund A 2 1 a
27 pellfund14b A 2 1 A + A 2 1 N Pell14QR A 2 1 a A + A 2 1 N = PellFund A 2 1 a
28 2 27 syl A 2 N A + A 2 1 N Pell14QR A 2 1 a A + A 2 1 N = PellFund A 2 1 a
29 26 28 mpbird A 2 N A + A 2 1 N Pell14QR A 2 1
30 18 29 sseldd A 2 N A + A 2 1 N a | c 0 d a = c + A 2 1 d